

EEE 303: Digital Electronics

Level $3 /$ Term $1 /$ Section A

Felbruary 2013 sesslan
Course Teacher
Upal Mahbub
Assistant Professor,
Dept. of EEE, BUET.
E-mail:
omeecd@eee.buet.ac.bd; omeecd@yahoo.com

The BOOLTAN Lagie

BOOLEAN Algebra: The History

1847: English mathematician George Boole introduced BOOLEAN algebra in his book, 'The Mathematical Analysis of Logic'. According to Huntington the term "Boolean algebra" was first suggested by Sheffer in 1913.

George Boole (1815-1864)

LECTURE 2

BOOLEAN Algebra: The History

1937: Shannon is credited with founding both digital computer and digital circuit design theory, when, as a 21 -year-old master's degree student at MIT, he wrote his thesis demonstrating that electrical applications of BOOLEAN algebra could construct and resolve any logical, numerical relationship.

It has been claimed that this was the most important master's thesis of all time.

(4.) Department of EEE, BUET

Boolean Algebraic Proof - Example 1	
$\begin{aligned} & \quad \mathbf{A}+\mathbf{A} \cdot \mathbf{B}=\mathbf{A} \\ & \frac{\text { Proof Steps }}{\mathbf{A}+\mathbf{A} \cdot \mathbf{B}} \\ & =\mathbf{A} \cdot \mathbf{1}+\mathbf{A} \cdot \mathbf{B} \\ & =\mathbf{A} \cdot(\mathbf{1}+\mathbf{B}) \\ & =\mathbf{A} \cdot \mathbf{1} \\ & =\mathbf{A} \end{aligned}$	(Absorption Theorem) Justification Identity element: A•1 = A Distributive $\mathbf{1}+\mathbf{B}=\mathbf{1}$ Identity element
Deparmeen of EEE, BuET	

Useful Theorems

\square Minimization	\because Minimization (dual)
$\mathrm{XY}+\mathrm{X} \overline{\mathrm{Y}}=\mathrm{Y}$	$(\mathrm{X}+\mathrm{Y})(\overline{\mathrm{X}}+\mathrm{Y})=\mathrm{Y}$
\square Absorption	- Absorption (dual)
$\mathrm{X}+\mathrm{XY}=\mathrm{X}$	$\mathrm{X} \cdot(\mathrm{X}+\mathrm{Y})=\mathrm{X}$
\square Simplification	
$\mathrm{X}+\overline{\mathrm{X}} \mathrm{Y}=\mathrm{X}+\mathrm{Y}$	Simplification (dual)
	$\mathrm{X} \cdot(\overline{\mathrm{X}}+\mathrm{Y})=\mathrm{X} \cdot \mathrm{Y}$

Deparment of EEE, BUET

Truth Table to Verify DeMorgan's
$\overline{\mathbf{X}+\mathbf{Y}}=\overline{\mathbf{X}} \cdot \overline{\mathbf{Y}} \quad \overline{\mathbf{X} \cdot \mathbf{Y}}=\overline{\mathbf{X}}+\overline{\mathbf{Y}}$

X	Y	$\mathrm{X} \cdot \mathrm{Y}$	$\mathrm{X}+\mathrm{Y}$	$\overline{\mathrm{X}}$	$\overline{\mathrm{Y}}$	$\overline{\mathrm{X}+\mathrm{Y}}$	$\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}$	$\overline{\mathrm{X} \cdot \mathrm{Y}}$	$\overline{\mathrm{X}}+\overline{\mathrm{Y}}$
0	0	0	0	1	1	1	1	1	1
0	1	0	1	1	0	0	0	1	1
1	0	0	1	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0	0

A. Deparment of EEE, buET

Exercise 1

\square Suppose there are three switches $\mathrm{x} 1, \mathrm{x} 2$ and x 3 to control a single light bulb L. The bulb is lit only if atleast two of the three switches is ON. Write down the truth table for controlling the bulb.

Exercise 1

Truth Table for Exercise 1

x 1	x 2	x 3	$\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Now write down the function $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)$ for the bulb switching.

To do this we need to understand minterms first

Minterm and Maxterms

\square Minterm: For a function of n variables a product terms in which each of the n variables appear once is called a minterm.
\square For a given row in the truth table, the minterm is formed by including x_{i} if $\mathrm{x}_{\mathrm{i}}=1$ and $!\mathrm{x}_{\mathrm{i}}$ if $!\mathrm{x}_{\mathrm{i}}=1$.
\square Maxterms is the complement of minterm.

Exercise 1: SOP Expression

$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\overline{x_{1}} \cdot \mathrm{x}_{2} \cdot \mathrm{x}_{3}+\mathrm{x}_{1} \cdot \overline{\mathrm{x}_{2}} \cdot \mathrm{x}_{3}+\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot \overline{\mathrm{x}_{3}}+\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot \mathrm{x}_{3}$

Now, find the minimum Sum-Of-Product (SOP) expression for the function by applying BOOLEAN Algebra.

Exercise 3: Find Minimum SOP
$\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)=\sum \mathrm{m}(0,1,2,3,5) 山$ SOP Form (Look for the ones)
$=\Pi \mathrm{M}(4,6,7) \amalg$ POS Form (Look for the zeros!!)

Find the minimum Sum-Of-Product (SOP) and Product-Of-Sum (POS) expression for this function by applying BOOLEAN Algebra (they should be the same if transformed to a common form!!).
(A) Deparment of EEE, bUET

Exercise 3: Cost Calculation

x 1	x 2	x 3	$\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\mathrm{m}_{1}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{6}=$?
Cost of $f(x 1, x 2, x 3)=$?
$\overline{\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)}=\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{7}=$?

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\overline{\overline{\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)}}
$$

$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\overline{\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{7}}$
$=\overline{\mathrm{m}_{0}} \cdot \overline{\mathrm{~m}_{2}} \cdot \overline{\mathrm{~m}_{3}} \cdot \overline{\mathrm{~m}_{7}}$
$=M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{7}$
Cost of $f(x 1, x 2, x 3)=$?
Cost from SOP may not be equal to cost from POS forms.
(A. Deparment of EeE, buet

Exercise 3: Cost Calculation					
				$f\left(x_{1}, x_{2}, x_{3}\right)=m_{1}+m_{4}+m_{5}+m_{6}=$?	
x1	x2	x3	$\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$)	Cost of $f(x 1, x 2, x 3)=13$ Considering NOT Gate	
0	0	0	0		
0	0	1	1	$\overline{\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)}=\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{7}=$?	
0	1	0	0	$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\overline{\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)}$	
0	1	1	0	$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\overline{\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{7}}$	
1	0	0	1		
1	0	1	1	$=\overline{\mathrm{m}_{0}} \cdot \overline{\mathrm{~m}_{2}} \cdot \overline{\mathrm{~m}_{3}} \cdot \overline{\mathrm{~m}_{7}}$	
1	1	0	1	$\begin{aligned} &= M_{0} \cdot \mathrm{M}_{2} \cdot \mathrm{M}_{3} \cdot \mathrm{M}_{7} \\ & \text { Considering }\end{aligned}$	
1	1	1	0	Cost of $f(x 1, x 2, x 3)=13$	Considering NOT Gate
Do not calculate cost for NOT gates if complemented input is available!					
(4) Deparment of EEE, BUET					

