DSP Lab EEE 312

BUET

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING,
DHAKA-1000, BANGLADESH.

COURSE NO.: EEE 312

List of Experiments

1. Study of Sampling, Quantization and Encoding.

2. Time domain analysis of discrete time signals and
systems

3. Z-transform and Its Application

4. Frequency domain analysis of DT signals and systems

5. FIR Filter Design
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BUET
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING,
DHAKA-1000, BANGLADESH.

COURSE NO.: EEE 312
Experiment No. 1

Study of Sampling, Quantization and Encoding

Most signals of practical interest, such as speech, biological signals, communication
signals etc. are analog. These signals must be processed for different purposes. Digital
signal processing of an analog signal is preferable to processing the signals directly in the
analog domain because of its flexibility in reconfiguration, better accuracy in control,
better storing capability and cost effectiveness. That’s why the analog signals are to be
converted into corresponding digital domain for the purpose of processing. The analog
signals are converted into digital signals through sampling, quantization and encoding.

PRELAB WORK:

= Read this laboratory tutorial carefully before coming to the

laboratory class, so that you know what is required.

= Try to follow the lecture notes of EEE 311.

» Familiarize yourself with relevant MATLAB functions and codes necessary for
this experiment.

* Do not bring any prepared MATLAB code in the lab with any
portable device.

THEORY:
Xa(t .
—a()> Sampler X(n) » Quantizer Xq(n) » Coder |,
Analog signal Discrete time Quantized Digital signal
signal signal
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Analog to digital conversion process
Sampling:

In this section, a continuous time signal is converted into a discrete time signal by taking
samples at discrete time instants.

Ideal Sampler

x,(nT) Discrete time

sampled signal

|
Analog L x(0)
signal I T

|

Sampling Process

The analog signal is sampled once every 7 seconds, resulting in a sampled data sequence.
The sampler is assumed to be ideal in that the value of the signal at an instant (an
infinitely small time) is taken. The most important parameter in the sampling process is
the sampling period 7, or the sampling frequency or sampling rate f,, which is defined as

1 . C .
f. = T Sampling frequency is given in units of ‘samples per second’ or ‘hertz’.

-

A sinusoidal Signal
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v

VL

Sampling operation is being performed

v

Sampled version of the sinusoidal signal

If the sampling is too frequent, then the DSP processor will have to process a large
amount of data in a much shorter time frame. If the sampling is too sparse, then important
information might be missing in the sampled signal. The choice is governed by sampling
theorem.

Sampling Theorem:

The sampling theorem specifies the minimum-sampling rate at which a continuous-time
signal needs to be uniformly sampled so that the original signal can be completely
recovered or reconstructed by these samples alone. The reconstruction of a sampled
signal is done by simple low pass filtering. For successful reconstruction of the sampled
signal, the sampling frequency must be equal to or greater than the twice time of the
highest frequency component of the original signal. Otherwise the signal cannot be
successfully recovered.

If a continuous time signal contains no frequency components higher than W Hz, then it
can be completely determined by uniform samples taken at a rate samples f, per second
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where

foz=2w,
1

or, in terms of sampling period, T<—

2w

EEE 312

In MATLAB, the signals obtained before and after sampling look like —
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Quantization:

In this section, a discrete time continuous-valued signal is converted into a discrete-time
discrete-valued (digital) signal. The value of each signal sample is represented by a value
selected from a finite set of possible values. The quantizer assigns each sample of x(n) to

the nearest quantization level by either rounding or truncation.

Quantization by rounding:
A

3 __A ........................... _§4n2 IA

Quantization
t Process is being done
P — by rounding

In the case of rounding, the step size is divided into upper and lower halves. The value in
the upper half are stepped into the next level and the value in the lower half remains in
that level.

Quantized signal
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Quantization by truncation:

A

3/,\ A
S i

1 Quantization
0 ¢ Process is being done
/ by truncation

In the case of truncation, the extended value for a particular level is cut down and the
sampled point stays at that particular level.

) L

Quantized signal
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In MATLAB, the sampled signals obtained before and after quantized sampling look like

Sampled Signal with 100Hz sampling frequency

0.6
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Quantized Signal with 8 quantization level

S = e N=SD D OO
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Performing the quantization operation on x(n), the quantized output x (n) is obtained.
The difference between unquantized sample x(n) and quantized output x (n)is called
quantization error, e, (n). The finite set of possible values are called quantization levels.

The distance A, between two successive quantization levels is called the quantization step
size or resolution.

The quantization error e, (n) in rounding is limited to
_A A
A to 5

ie. —%Seq(n)ﬁ%

If x,, and x,_, represent the minimum and maximum value of x(n) and L is the

X

number of the quantization levels, then

X

max xmin

L-1

If x , =+V and x_,, =-V, and if b is the number of bits then
2V

A=
20 —1

The quantization error is then given by —
e(n) =x,(n)—x(n)

The mean-square value of the error is given by —

ol = ifé e’ (n)de(n) = %

The performance of the A/D converter is characterized by SQNR, defined as

[\S]

SONR == (A)
o

e

=

SONR ,, =10log,, SONR =101log,, o> —10log,, &

©Dept. of EEE, BUET 9



DSP Lab EEE 312

2 2 12 2 12 2 2b _1 2 2
(o2
© AL

2

and SONR , =10log,, 3+1010g10(;)‘ j+1010g10(2b )2

2

For higher values of b like 8, 10 or 12, we can approximate, 2” —1=2"

2

SONR,, ~10log,, 3 + 1010g10(;” j +10log,, 2%

2

2
=477 + 101og10[%J +6b

Thus for each bit added to the A/D converter, the SQNR is improved by approximately 6
dB. For sine wave input with amplitude = 1 volt,

=0
SONR ,, =4.77+10log,, o> —10leg,, V> + 6b

=1.76 + 6b (B)

where, b= Number of bits

Coding:

The coding process in an A/D converter assigns a unique binary number to each
quantization level. If L is the number of levels, then L levels can be represented by b bits

where 2° =L or b=log, L.

LAB WORKS :

= Familiarize yourself with the MATLAB commands that will be required for this
lab.
* You may require the following MATLAB built-in functions for this experiment —

sin(), interp1(), length(), max(), min(), stem(), plot(),find(), ones(), ceil(), dec2bin()

©Dept. of EEE, BUET 10



DSP Lab EEE 312

Part— A

Sampling of an analog signal and reconstruction of the sampled signal.

1. Generate a signal, x(t) =sin(2710¢ +0°)

2. Take the samples of this signal at a sampling rate of 20 Hz.
3. Reconstruct the analog signal by interpolation. [Use interp1() function]
4. Repeat steps 2 and 3 at a sampling rate of 50 Hz, 100 Hz and 10 Hz.

5. Generate another signal, y(¢) =sin(2710¢) + sin(2750¢) + sin(277100¢)

6. For successful reconstruction of the signal, what should be its sampling frequency?
Verity it though the program.

Comment on the obtained results in step — 4 and 6. Explain the results.

Part — B

Study of quantization and quantization error.
1. Write a MATLAB source code that will realize the uniform quantizer .
2. Take the signal of step — 5 in Part — A and sample it by 200 Hz sampling frequency.
3. Quantize the signal by a 3 bit uniform quantizer.
4. Obtain the quantization noise power.
5. Obtain SQNR from equations (A) and (B) which are described in the theory part.
6. Reconstruct the original signal by interpolation. [Use interp1() function]

7. Repeat steps 3 to 6 for 4 and 6 bit uniform quantizer.

Comment on the obtained results in step - 6. Explain the result.

Part C
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Encoding of the quantized sequence.

In the next stage of quantization, the sampled data will be converted into binary data. For
this, first you have to represent the quantization levels into decimal value and then have
to convert it into binary data.

e Obtain a sampled quantized data sequence.

e Represent each level by a definite binary number. The number of digits
b=1log, L, where L is the quantized level.

Home tasks

Theory:

An important application of this experiment is in Pulse Code Modulation (PCM) system.
PCM is a method for sampling and quantizing an analog signal for the purpose of
transmitting or storing the signal in digital form. It is widely used for speech transmission
in telephone communications and for telemetry systems that employ radio transmission.

Speech signals have the characteristics that small signal amplitudes occur more
frequently than large signal amplitudes. A uniform quantizer provides the same spacing
between successive levels throughout the entire dynamic range of the signal. A better
approach is to use a non uniform quantizer, which provides more closely spaced levels at
the low signal amplitudes and more widely spaced levels at the large signal amplitudes. A
non uniform quantizer characteristic is usually obtained by passing the signal through a
non linear device that compresses the signal amplitudes, followed by a uniform quantizer.
With the use of non — uniform quantizer prior to a uniform one, quantization noise is
greatly reduced.

Non — uniform quantizer are of two types —

e U.S. and Canadian standard
e FEuropean standard

U.S. and Canadian telecommunication systems use - law compressor, which has the
input — output characteristics of the form —
LG <1 pi<1
In(1+ )
where s is the normalized input, y is the normalized output, sgn(.) is the sign function and
M 1s a parameter that is selected to give the desired compression characteristics. This

system adopted =255 for encoding of speech waveforms.

European telecommunication systems use A4 - law compressor, which has the input —
output characteristics of the form —

©Dept. of EEE, BUET 12



DSP Lab EEE 312

1+ In(4]s)) 1

sgn(s), — <51 <1
_) 1+In4 gn(s) A | |

ﬁ sgn(s) 0< |s| < 1

1+1n 4 ’ A
where A is chosen as 87.56.
[See Chapter 10 of the 2" reference]
Simulate the following system with MATLAB —

Quantized
Generate a Sampler M -law > Uniform Signal >
sinusoidal signal compressor Quantizer

Process the sinusoidal signal through the above sampler, xlaw compressor and
uniform quantizer. As a part of processing, you have to do the following -

- Write MATLAB codes for each section

- Show the waveshapes for each section

- Compute the signal to quantization-noise ratio (of the quantized signal) with the
given formulae(for signal in step 5 part A).

References:

1) Proakis & Manolakis, “Digital Signal Processing: Principles, Algorithms and
Applications.”, Chapter 1, 3" Edition , Prentice Hall Ltd.

2) Ingle & Proakis, “ Digital Signal Processing using MATLAB ”, Edition 2000
Thomson-Brooks/Cole Co Ltd.

The laboratory tutorial of this experiment is prepared by —

Imtiaz Ahmed
Lecturer, Dept. of EEE, BUET.

Under the supervision of —

Dr. Md. Kamrul Hasan
Professor, Dept. of EEE, BUET.

June 9, 2007
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BUET

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING,
DHAKA-1000, BANGLADESH.

COURSE NO.: EEE 312

Experiment No. 2

Time domain analysis of discrete time signals and systems
% “The purpose of computing is insight, not numbers.” — R.W. Hamming

In this experiment, mainly time domain properties of discrete time signals and systems
will be analyzed. First of all different discrete time sequence generation and synthesis
will be performed. Then LTI system response in terms of convolution and difference
equation will be observed. Last but not the least, correlation of two signals, its uses in
different fields will be analyzed.

Besides some MATLAB based practical pertinent examples will be presented too.
Several related exercises and real-time applications are listed for proper comprehension
of the theory.

Pre-lab Work:

1. Familiarize yourself with the experiment manual before attending the lab.

2. Practice the examples and exercises listed in this experiment at home for better
class performance.

3. DO NOT bring any relevant MATLAB codes, neither in any portable device nor
in written form.

Important MATLAB functions used in this experiment:

stem(), fliplr(), min(), max(), conv(), filter(), xcorr(), randn(), rand()

©Dept. of EEE, BUET 14
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Part A

Generating basic sequences:

a) To implement unit impulse sequence

o(n—ny)=|1, n=n, < <
over n <n,<
0, n#n, v =T 2T (1)

% Generate impulse sequence

% Say, n;=-3 and n,=3 (7 point sequence). Consider lag, n,= -1
>>n = -3;

>>n,= 3;

>>n=n:.ny;

>>n,=-1;

>>x,=[(n-n,) = = 0]; % using logical argument

>>stem(n,X);

b) To implement unit step sequence

u(n—n,) =1, nzn,
over n <n,<n, D)
0, n<n, 2)

just set X, = [(n-n,)>=0] in the above program.
Sample results are shown in Figure 1.

" &
£ ost
==
0 & & & & &
3 5 Ry i i 3 5
I &
0 &
3 b Ry 0 i 2 3
il

Figure 1: x;(n) = 8(n+1) and x2(n) = u(n+1)

Lab Exercise : A.1

Generate a ramp sequence (shown in Figure 2) following the above program.(length and
lag must be variable).
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e L
2 -1

Figure 2: Result of Lab Exercise: A.1

Lab Exercise: A.2

O =

Let n; denotes the time index for x;(n) and n, represent the time index for x»(n). Write a
general program to find x(n)=x;(n)+x,(n).The index of x(n) will start with the minimum
of n; and n, and end with the maximum of n; and n,.

Given, xl(n)Z{g , 1,2, 3}and x5(n)={0 ’Tl ,2,3%).

Lab Exercise : A.3

The up-sampler is a discrete-time system defined by the input-output relation

y(n) =Jﬁc(%),n = 0.+ L+ 2L..

0,otherwise

3)

L is called the up-sampling factor which is a positive integer

greater than 1. L-1 equidistant zero samples are inserted by the up-sampler between two
input samples. It finds applications in sampling rate alteration process. Say input is a sine
wave with frequency 0.36 rad/sec and L = 3 . Take time index, n = 1 to 52. Observe the

up-sampled signal up to 52 samples. (Result shown in Figure 3)

Lab Exercise : A.4

Find the even and odd parts of the ramp signal obtained from Exercise 1.1

(Result shown in Figure 4)

Some helpful m-file routines:

function [y,n]=sigshift(x,m,n0) % For signal
shifting

n=m+n0;

Y=X5

function [y,n]=sigfold(x,n) % For signal folding

y=fliplr(x);
n=-fliplr(n);

©Dept. of EEE, BUET

function [y,n]=sigadd(x1,n1,x2,n2) % For adding
%two signals
n=min(n1(1),n2(1)):max(nl(end),n2(end));
yl=zeros(1,length(n));

y2=yl;

y1(find((n>=n1(1))&(n<=nl(end))))=x1;
y2(find((n>=n2(1))&(n<=n2(end))))=x2;
y=yl+y2;
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Figure 4 : Result of Lab Exercise : A.4
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Part B

Response of LTI Systems to Arbitrary inputs: Convolution

For a relaxed LTI system, the response y(n) to a given input signal x(n) can be obtained
if we know the system impulse response /i(n) . Then response y(n) is given by the
following relation

00

y(n) = Z x(Bh(n — k) = x(n) * h(n) “4)

k=-0

which is known as the convolution sum.

Example:

Using conv() function , we can compute the convolution sum of two discrete time
signals. But the outcome of conv() function does not reveal the timing information. So
time index of the sum should be derived from the signals to be convolved. Recall that the
lowest time index of the convolution sum is the sum of the lowest time indices of the two
signals to be convolved. Same thing applies for highest time index of the sum. Let

x1=[4263815];%=[386967];

>>x1=[4263815];

>>n1=[-2:4];% generating index

>>x2=[386967];

>>n2=[-4:1];

>>kmin=n1(1)+n2(1);% left edge of convolved result
>>kmax=n1(end)+n2(end); % right edge of convolved result
>>y=conv(x1,x2);

>>k=kmin:kmax; % generating index of the result
>>subplot(311),stem(n1,x1)
>>subplot(312),stem(n2,x2)
>>subplot(313),stem(k,y)

Lab Exercise: B.1

In the previous example, x;(n) , x»(n) and y(n) are all of different lengths and scale, and
this is far from ideal (Figure 5). Write a general program to bring three plots into same
horizontal scale.(Figure 6)
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Figure 6 : With same horizontal scale

m-file which returns both convolved result and index :

nyb=nx(1)+nh(1); y=conv(x,h)

function [y ny]=conv_m(x,nx,h,nh) ‘ ny=[nyb:nye];
nye=nx(length(x))+nh(length(h));
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Part C

System Response from difference equations:

An important subclass of LTI discrete time (DT) systems is characterized by a linear constant
co-efficient difference equation of the form

N

M
D gy - k) = Y bx(n - k) (5)
k=0

k=0

where x(n) and y(n) are, respectively, the input and output of the system. (N>M assumed).
{a,} and { b, } are the coefficients. We can modify the equation as

N M

y(n) = —Z it 3 y(n - k) + Z L3 x(n — k) .Taking ayinside ax and by,we get
k=1 % k=0 4o
N M

Yy = =Y @y = k) o+ Y bx(n = k) (6)
k=1 k=0

Based on the above equation, a causal LTI system can be simulated in MATLAB using
filter() function. Its general form is

y = filter(b,a,x); % remember co-efficient ap must be non-zero.
If ap is not equal to 1, filter() normalizes the system coefficients by a

Lab Exercise: C.1

Consider a system described by the following equation

y(n) +0.6y(n-1)=x(n)

Use MATLAB to find impulse response, step response and sinusoidal response for
x(n)=0.5sin(n)u(n) in the range -10<n<20. Verify the result using conv() function for step
and sinusoidal responses.

Lab Exercise C.2:

Now consider
y(n) + 0.6y(n-1)= x(n)+x(n-2)

Obtain step response for this system applying superposition theorem. DO NOT use filter()
function in that case. Verify your result using filter() function later on.
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Figure 7 : Result of Exercise C.1

Part D
Correlation:

The cross-correlation of two deterministic real discrete-time finite energy sequences x(n) and
y(n) is a third sequence ry,(/) defined as

o0

re = D xmyn - D). (7)

n=-ow

In dealing finite duration sequences where x(n)=y(n)=0 for n<0 and n>N-1
N -]k -1
re( = D xmy(n - D) (8)

n=i

wherei=/,k=0for/>0 andi=0 ,k=1for / <0(See Appendix for clarification)

A distinct peak in the CCF indicates that the two signals are matched for that particular time
shift. This has important applications in signal detection and system identification.
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Example:

Consider,

y(n)=x(n-2) where x(n)=[3 11 7 0 -1 4 2]. Then cross-correlating x(n) with y(n) we get

In the following figure, it is apparent by inspection that the CCF is very small if k=0 but
substantial if k=2. This is because y(n) lags behind x(n) by 2 samples and a match therefore
occurs at 2 samples delay.

>>x =[3,11,7,0,-1,4,2];

>>n = -3:3;

>>[y,ny] = sigshift(x,n,2)
>>[x,nx] = sigfold(x,n);
>>[rxy,nxy] = conv_m(X,nx,y,ny);
>>stem(nxy,rxy/max(rxy))

0.9- maximum

0.8+ /

0.7
0.6
CCF  0°7
0.4+
0.3

0.2

T It i T@

4 -2 0 2 4 6 8
lag

Figure 8 : Result of cross-correlation between x(n) and y(n)

There is a connection between convolution and correlation.

For convolution, we setx(n) * y(n) = Z x(m)y(k — n)

Then if we set, x(n) * y(-n) = z x(n)y(n — k) we get the desired result for CCF.
re() = D xmy(n = k) = x(m) * y(-n) 9)

n=-—-0

©Dept of EEE 22



Digital Signal Processing 1 Laboratory EEE 312

So we can compute CCF by conv() function too.
Iyy = conv(x,fliplr(y));% Here fliplr() function folds y.

If the signals are ergodic then CCF is defined as

1 M

Fa(h) = lim ———— " x(m)y(n — k) (10)

Mow 2M + 1

For random signals we have to calculate r,,(k) as E[x(n)y(n-k)] to be exact. But to calculate
an expected value accurately we need infinite data points. In practice data is finite so we take
the estimated CCF as averaged result.

For N point periodic signals a simpler alternative is

. R
Pk = Z;) X(m)y(n — k) (11)
Similarly auto-correlation function can be defined. Just replace y(n) with x(n).
Note: ACF of a periodic signal is periodic.
Exercise: D.1
a) Determine the ACF of a sine wave sin(w,t) analytically.(Homework)
b) Take period, T=2ms, tstep as T/100.

1. Take t=tstep:tstep:T ;

Find ACF for x=2*sin(2*pi*t/T).
2. Repeat 1 for t=tstep:tstep:3*T

Explain for (b.2) why ACF magnitude decreases for successive periods? What happens if we
set t(end)=5T , 10T etc.?

c) Observe the ACF of a random white noise sequence.
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Applications of ACF/CCEF:

1. Detecting a periodic input corrupted by AWGN

This is an example (See Figure 9-10) that illustrates the use of ACF to identify a hidden
periodicity in an observed signal. This example will demonstrate how white noise gets
suppressed in auto-correlation domain. For instance, you can observe the ACF of a white
noise sequence which is characterized by an impulse (i.e noise power) at zero lag and nearly
zero at other locations. The more the data points you take, the more the result matches an
impulse.

%observe the result for different SNR(0,-5,-10 dB)

>>T=2e-3; % period=2ms

>>tstep=T/100;

>>t=tstep:tstep:3*T; % taking time index upto 3 periods
>>x=2*sin(2*pi*t/T); % Input

>>Px=sum(x.”2)/length(x); % Input power

>>SNR=-10; % in dB

>>Py=Px/10"(SNR/10);

>>n=sqrt(Py)*randn(1,length(t));% generate white noise

>>y=x+n; % Corrupted input

>>ACF_x=normalize(xcorr(x)); % Normalizing the peak to 1
>>ACF_n=normalize(xcorr(n));

>>ACF_y=normalize(xcorr(y));

>>ACF_y(length(x))=.4*max(ACF y); %You can enable this line for better
%understanding. Scaling value should be decreased for lower SNR
>>figure(1)

>>subplot(211),plot(t,x)

>>subplot(212),plot(t,n)

>>figure(2)

>>subplot(221),plot(tstep*(1:length(ACF_x)),ACF x)% showing ACF w.r.t. time
>>subplot(222),plot(tstep*(1:length(ACF y)),ACF _y)% showing ACF w.r.t. time
% hold on

function R=normalize(x)
R=x/max(x);

©Dept of EEE 24



Digital Signal Processing 1 Laboratory

2
1 L -
O L
1t i
-2 | | |
0 @) 3 4 5 f
x 10
10
5 L -
oF l
5L i
_10 1 1 1 1 1
0 1 2 3 4 5 6
(b) x10°
Figure 9: (a) Input periodic wave (b) Input corrupted by AWGN for -5dB SNR
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Figure 10: (a) ACF of input (b,c,d) ACF of noisy sequence.
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Lab Exercise D.2

Derive a technique to obtain the original periodic signal if you have ACF of the noisy
sequence. Test your technique for the cases displayed above. If the signal has a phase shift,
could you recover it from ACF? Explain.

2. Estimation of impulse response:

Output of a relaxed system is given by y(n)=h(n) * x(n). If we cross-correlate the output of
the system with a noisy input with normal pdf, then the cross-correlation

R, (k) = y(n) % r(=n) = [r(n) * h(W)]* r(=n) = r(n) * r(~n) * h(n) = R (k) ¥h(n) ~ (12)

where r(n) is a white noise input, R,, (k) is the auto-correlation of the noise input. As the auto-

correlation of white noise sequence is like impulse sequence (In other words, the input noise
has a much greater bandwidth than that of the system).we can write

R, (k)= h(n) (13)

Therefore, we say that if we correlate the white noise input with the output of the system, we
will have an approximation of the impulse response of the system (See Figure 11).

Consider a system:
y(n) + 06y(n — 1) = x(n)

%estimating system impulse response using cross-correlation
>>N=500;
>>nr=0:499;
~>Ny=nr;
>>r=randn(1,N);
>>y=zeros(size(r));
>>for n=2:500
y(n)=r(n)-0.6*y(n-1);

end
>>rr=fliplr(r);
>>nrr=-fliplr(nr);
>>Ryr=conv(y,r); % Calculating correlation
>>kmin=ny(1)+nrr(1);
>>kmax=ny(length(ny))+nrr(length(nrr));
>>k=kmin:kmax; % generating index
>>subplot(211),stem(k,Ryr/Ryr(N))
>>title(' Approximate Impulse Response');
>>num=[1 0];
>>den=[1 0.5];
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>>n=0:499;

>>x=zeros(size(n));

>>x(1)=1;
>>yy=filter(num,den,x);
>>subplot(212),stem(n,yy)
>>title('Actual Impulse Response')

Approximate Impulse Response
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Figure 11: Actual and Estimated Impulse Response.

End of Experiment Exercises:

1. Write a general program to compute CCF of two DT signals. Signals can have
different time scale. DO NOT use conv() or xcorr() function. Say two inputs are

x()={ ....0,1,1,3,5,7.2,0....} and y(n)={ ....0,5,5,5,3,3,1,1,0....}

You can take insight from (8).This problem is just for proper understanding about what
is happening inside conv() and xcorr() functions.
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2. Detection of signals in noise by auto-correlation

Consider a radar transmitting a short tone burst of EM energy(Figure 12-a) and a weak echo
from a distant target(Figure 12-b).In the absence of noise weak echo can be amplified and
there is no problem detecting it. If there is background of noise whose amplitude exceeds that
of the echo, the echo will be masked and not detectable((Figure 12-c),echo+noise).As we
know noise is suppressed in ACF domain, then write a general program to detect the echo
using correlation (Figure 12-d). If the tone burst has a gradual increase in frequency, what
will happen? Is it advantageous for detection? Explain with necessary simulated figures.

@
1 1 1 1 1 =
400 600 800 1000 1200
° AVAVAV ®)
_1 1 1 1 1 1 1
0 200 400 600 800 1000 1200
5
I
O |l (C)
_5 | | | | | |
0 200 400 600 800 1000 1200
1 \
O L
(d)
1

1 1 1 1
-1000 -500 0 500 1000

Figure 12:(a) Transmitted tone burst (b)Received weak echo(c)Received echo buried into
background noise(d)CCF between (a) and (c) to locate a weak echo. It shows that after 500
units delay an echo arrives (location of the peak).

3. Detection of a transmitted sequence

Let in the transmitter, to transmit zero (0) we send xy(n) for 0 <n < L-1 and to transmit
one (1) we send x;(n) for 0 <n <L-1 where x;(n) = - xo(n). The signal received by the
receiver

y(mn)=x;mn)+wmn) i=0,1and 0<n<L-1 (14)

w(n) is additive white noise.
Present a technique to detect the sequence transmitted from y(n).Assume that
particular receiver knows xp(n) and x;(n).Write a general MATLAB program for this

purpose.
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4. Signal smoothing by a moving average (MA) system:

From (6) if we set {ax}=0 for k= 1,...,N then (6) turns into

M
vy = Y bex(n = k) (15)
k=0

which is a non-recursive linear time-invariant system. This system takes most recent M+1
points and add them after weighting. This type of system is called moving average (MA)
system.

Simple working MA system can be expressed as

M -1

1
y(n) = — x(n — k). (16)
v &

Such a system is often used in smoothing random variations in data.

x(n) =<> y(n) MA system |— z(n)

A

d(n)
Figure 13: Signal smoothing by MA system

Consider, x(n) = 2n(0.9)" . Take 50 point signal.

Noise, d = rand(1,50)-0.5; % to make noise bipolar

Take M=3.Write a sample program for the whole system shown (See Figure 14). Plot the M
versus normalized error curve.

x(n) — z(n)
x(n)

Normalized error, e(n) =

©Dept of EEE 29



Digital Signal Processing 1 Laboratory EEE 312

—e—x(n) —e— x(n)

! / x(n)+d(n) ||

0 10 20 30 40 50 O 10 20 30 40 50
time index time index

Figure 14: (left) x(n)=original sequence and y(n)=x(n)~+d(n),corrupted sequence. (right)
| z(n) ,output of the MA system and x(n)

Appendix :
Cwverlap region for 1 sample right shift
_.—-’)k‘--\_
i I Cwverlap region
x(n) o I T e I | - [Nz [N ;T]riér.:‘mple right
yn-1) —|o | 1|2 N-2 |N-L
1
y(n-1) | o|t|2| - N1
!
-k -1
r, () = Z x(m)y(n — D wherei=Lk=0forl>0
n=1i

(a)
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_ Overlap region for !
Qverlap region for 1 gample right shift

sample right shift T
'\“‘—\
g2 e N-i-f e N2 |N| O x(7)
0 L N-Z | M-l |+— +
| y(n 1)
glla e (T s N-Z | M-l ; |y(n_|_l)
N k] -1
rxy(’) = Z I(H)y(n - 0 wherei=0,k=Iforl/<0
(b)

Figure 15: (a, b)illustrates cross-correlation of two finite N point sequences (equation 3).
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BUET
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING,
DHAKA-1000, BANGLADESH.

COURSE NO.: EEE 312

Experiment No. -3

Z-transform and Its Application

The Z-transform plays the same role in the analysis of discrete time signals and LTI systems
as the Laplace transform does in the analysis of continuous-time signals and LTI systems.
The use of z-transform techniques permits simple algebraic manipulations. The Z-transform
has become an important tool in the analysis and design of digital filters. In this experiment,
different features of Z-transform have been discussed through various examples and pre-lab
work exercises. At the end of this experiment, one will be able to perform Z transformation,
inverse Z transform, system analysis through stability and causality.

Pre Lab Concerns:

= Read this lab description carefully before coming to the laboratory class,
so that you will know what is required.

* Try to follow the lecture notes of EEE 311.

= Try to practice the Pre Lab exercises before coming to class.

* The problems that will be given in the class may differ from the given ones
but they will certainly cover the syllabus.

* You will be able to solve the problems in lab if you do practice before coming to
class.

* Do not bring any prepared MATLAB code in the lab with any portable
device.

Used Functions:

ztrans(), iztrans(), conv(), residuez(), impz(), filter(), zplane(),zp2sos(),tf2zp()

&
SPTOOL
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Part — A

Z - transform

The Z-transform of a discrete time signal x(n) is —

n=o00

X(z)= z x(n)z™

where, z is a complex variable. Since z-transform is an infinite series, it exists only for those
values of z for which this series converges. The region of convergence (ROC) of X(z) is the
set of all values of z for which X(z) attains a finite value.

Example:
x(n) is a finite duration signal like -
x(n) =1{1,2,5,7,0,1}.
A

Its z transformed signal, X(z)=1+2z"'+5z7 +7z" +z°

except z=0.

, its ROC is entire Z-plane

For x(n)= {1,2,5,7,0,1}, its z transformed signal is X (z)= 22 +2z+5+7z7" + 27, here its
ROC is entire Z’rplane except z=0 and z=o.

Z transform of different functions:

Sequence Transform ROC
o[n] 1 all z
u[n] 7/(z-1) |z|>1
-u[-n-1] z/(z-1) |z|<1
d [n-m] z" all z except 0 if m>0 or if m<0
a"u[n] z/(z-a) |z|>|a
-a"u[-n-1] z/(z-a) |z|<la]
na"u[n] az/(z-a)* IZ|>la
-na"u[-n-1] az/(z-a)’ |z|<]a]
[coswon]u[n] (2*-[coswo]z)/(z*-[2cosmo]z+]1) Zj>1
[sinmon]u[n] [sinwo]z)/(z*-[2cosmo]z+1) |z[>1
[r"cosmon]u[n] (2°-[rcoswo]z)/(z>-[2rcosmo]z+17) |z[>1
[r"sinwon]u[n] [rsinwo]z)/(z*-[2rcosmo]z+17) |z|>r
a"u[n] - a"u[n-N] (ZN-a")/2V ! (z-a) 1Z|>0

MATLAB representation:

©Dept of EEE 33



Digital Signal Processing 1 Laboratory EEE 312

For representing a signal like this X(z)=1+2z" +5z7 + 7z~ + z~ in MATLAB, we just
have to put the coefficients of the polynomial like -

x=[1,2,5,7,0,1];
For converting the time domain signal into equivalent Z domain ztrans() function can be
used which is part of the symbolic toolbox. It evaluates signals of the form x[n]u[#], i.e. for
non-negative values of n.

Example

To find a Z transform of a function, for example, a"u[n], we have to write following codes —
>>syms an f;

>> f=a’n;

>> ztrans(f)

Note that there is also the iztrans() function which performs inverse Z transform.

Pre-Lab Exercise — A.1:

Find the Z transform for the signals listed in the above table and verify with the given results.

Properties of Z transform:

Properties

Uniqueness Xm!) = b} © X(2) = Y(2)

Z(K{xph = KX(2) |
Z7UKX(2)) = K{xm)

Homogeneity

" Z{xm ! + v = X(@) + Y(2)

Additivity |
ZH(X(@ + Y(@) = {xmt + 1wl

" Z{xp-mt = 7" X(2) V

Shifting
ZilZiﬂX(Z) = {-’f(u—;t)}
) Z{x(n)} * {h(n)} = Z{htn)} * {.l’(,,)} = X(:)H(Z)

Convolution

Zil(X(:)H(f)) = {xu} * thwt = {haw} * {xm}

Among different properties of z-transform, convolution property is an important one. It
removes the complexity of doing convolution, because this property transforms the time
domain convolution into a multiplication of two functions.
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Pre-Lab Exercise — A.2:

Let X,(z)=2+3z"" +4z%and X, (z)=3+4z" +5z7 +627. Determine
X,;(z)=X,(2)X,(z) . Use conv() function to obtain the result and verify the result
theoretically.

Part — B

Inverse Z-transform

The inverse Z-transform is the conversion of Z-domain signal into time domain signal. The
inversion can be done by Cauchy’s Integral theorem, long division process, partial fraction
expansion etc.

I) Partial fraction expansion:
Suppose a function X(z) is given in Z-domain.

by +bz" +b,z7 4eene +b,z"  B(z
X(Z): 0 1_l 2 - M — — ()
l+az" +a,z" 4+ +ayz A(z)

To convert it in the time domain, it is expressed as

b +bz " +b,z e wb. Ny
X(z)= 0o Y . > _ N-1 ——+ C,z ¢ where, M >N
l+a,z" +a,z7" +-- +a,z T

Now the time domain signal x(n) is —

x(n) = ﬁ RZ" L;l} + MZ_“NC,C Sn—k)

— Pk

MATLAB representation:

A MATLAB function residuez() is available to compute the residue part and the direct terms

of a rational part in z™'. [R, p, C] = residuez(b,a) finds the residues, poles and direct terms of
X(z) in which two polynomial B(z) and A(z) are given in two vectors b and a.
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Pre-Lab Exercise — B.1:

1. A function X(z) is given below.

-z

3z° —4z+1

Find the residue, poles and direct terms of it from the function and hence determine the
inverse of X(z) manually. Verify your result using iztrans().

X(z)=

IT) Long Division:

For causal sequences, the Z-transform X(z) can be expanded into power series in z™'. In
series expansion, the coefficient multiplying by z ™" is then the n™ sample x[n]. For a rational
X(z), a convenient way to determine the power series is to express the numerator and the
denominator as polynomials in z'
division.

, and then obtain the power series expansion by long

MATLAB representation:

By using impz() function we can get the sampled values in time domain from an analogous
Z-domain function. Same process can be done by using a filter() function, where the input
will be an impulse function.

Pre-Lab Exercise — B.2:

1. The transfer function of a causal system is given by

1+2.0z"
1+04z7'—0.12z72

H(z)=

Determine the first 10 coefficients of the impulse response of this system.

Part — C

Pole — zero plot & ROC for different cases

The poles are those values for which the system transfer function becomes infinite. These are
the roots of the denominator of a transfer function.
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The zeros are those values for which the system transfer function becomes zero. These are
the roots of the numerator of a transfer function.

The pole zero plot of a system provides information about the system behavior.
MATLAB representation:

With the function zplane(), the pole zero plot can be obtained from which we can get the
information of system behavior.

Example:

For a transfer function of H(z) = ;1 ,
1-0.9z"

if we write MATLAB code like —

>>b=[10];
>>a=[1-0.9];
>> zplane(b,a)
the pole zero plot will be —

Pole Zero plot
i =TT T T T~
0.8, // \\
0.6} / AN
/ \
/ \
0.4+ / \
/ \
§ 02 / \
e 1
E 0-—-—-—-- b = — G -—————————- Kl
£ | |
2 x '
e 0.2+ \ /
= \ !
/
0.4 \\ /
\ /
0.6 \\ //
N /
0.8} S -
-1k T -7
L L L L L
1 0.5 0 0.5 1

Real Part

ROC :

e The ROC of a causal signal is the exterior of a circle of radius |a| .
e The ROC of an anticausal signal is the interior of a circle | ,B| .

e The ROC of a noncausal signal is a ring (annular region) in the Z-plane.

Pole location and time domain behavior for causal signals
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Causal real signals with real poles or simple complex conjugate pair of poles, which are
inside or on the unit circle are always bounded in amplitude. On the other hand, if they are
outside the unit circle then the signals become unbounded.

Effect of single pole:

Effect of real poles:

N
N

Effect of complex conjugate pair of poles:
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Effect of multiple poles:

Multiple real poles:
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MATLAB representation:

From the above discussion it is known that different systems provide different impulse
responses depending on their pole zero location. That’s why different signals can be
generated from those defined systems.

For a ramp signal we see that the signal should have 2 positive real poles on the unit circle.
So define a system transfer function which will contain 2 positive real poles. Then obtain the
impulse response of that system.

>>num=[1 0 0];
>>den=[1 -2 1];
>> [h,t]=impz(num,den,100);

>> stem(h)
RAMP signal
100 : : : ‘
o)
90} 5
80 é‘é
70 ]
60| «

60 70 80 90 100

Using sptool for system design:

On the MATLAB command prompt type SptOOl to start the filter design tool. Click New
Design, set Algorithm to Pole/Zero Editor, and delete all current poles and

zeros by pressing Delete All To be able to watch the frequency response simultaneously
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while adding/moving/deleting poles/zeros, you should also open the View window from
the small parent window (“Filters” specification is in the middle column). After adding a set
of poles/zeros you can also observe the impulse response and step response for that particular
design.

Pre-Lab Exercises — C.1:

Design a system whose impulse response gives a digital oscillation.

Pre-Lab Exercises — C.2:

Design a simple low pass and a high pass filter.

Causality and stability:

e An LTI system is causal if and only if the ROC of a system transfer function is
the exterior of a circle of radius, » < |oo| .

e An LTI system is BIBO stable if and only if the ROC of the system transfer
function includes the unit circle.

So a causal LTI system is BIBO stable if and only if all the poles of H(z) are inside the unit
circle.

MATLAB representation:

The inversion process can be done by any of the above described methods. The function
zp2so0s() can be used to convert the z-domain transfer function into the factored form
whereas tf2zp() can be used to obtain poles, zeros and gain constant.

Pre-Lab Exercise — C.3:

Determine the system function and the response for a) unit step b) unit impulse input
described by the difference equation- (assume a causal LTI system)

y(m)=y(n—=1) + x(n)
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Looking only the pole-zero plot of Y(Z), state whether the system will be stable.
Comment on ROC.

Pre-Lab Exercise — C.4:

Determine the system function and the unit sample response for a stable LTI system
described by the difference equation-

() =%y(n 1)t x(n) + %x(n Y
Comment on ROC.

Pre-Lab Exercise — C.5:

An LTI system is characterized by the system transfer function
3-4z7"
1-3.5z7" +1.5z7

H(z)=

Specify the ROC of H(z) and determine h(n) for the following conditions:
(a) The system is causal, (b) The system is anticausal, & (¢) The system is noncausal.

For which case, the system is stable?

Pre-Lab Exercise — C.6:

Express the following z — transform in factored form, find its poles and zeros, plot the poles,
zeros and then determine its ROCs for causal cases, anticausal case and noncausal case. (
Here take the coefficients as the inputs from the keyboard. )

2z% +162° +44z% + 562 +32

G(z)=
@ 3z +3z° 1522 +182z-12

Pole zero cancellation:

When a Z-transform has a pole that is at the same location as a zero, the pole is cancelled by
zero, consequently, the term containing that pole in the inverse z term vanishes. This pole
zero cancellation can occur either in the system function itself or in the product of the system
transfer function with the z-transform of the input signal.
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Pre-Lab Exercise — C.7:

Determine the system function and the output response for the causal system described by the
difference equation-

Y =2y —1)—%y(n ~2)+ x(n)

where, x(n)=06(n)— %5(71 -1)

Is it possible to reconstruct the original system response from the output response?

Pre-Lab Exercise — C.8:

An LTI system is given by

2
z

z2-25z+1

Make the system stable assuming the system (a) causal and (b) anticausal.

Part — D

Higher order stability testing

For testing the stability of a higher order transfer function, a famous method called Schiir
Cohn stability test is used.

The transfer function of a system is —
B(2)

H(z)= 1)

The denominator polynomial of the system transfer function is —

_ -1 -2 -N
A(z)=1+a,z" +a,z" +--eeeee +ayz

By denoting this denominator with a polynomial of degree m —

A (Z)ziam (k)z™ and a_(0)=1
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The reciprocal or reverse polynomial of B, (z) are the same as those of A4, (z), but in the
reverse order. In the Schiir Cohn stability test, to determine a set of coefficients, called

reflection coefficients, K,,K,, -+ K, from the polynomials 4, (z). First, we set
Ay (2) = A(z)
and
Ky =ay(N)
Then we compute the lower-degree polynomials A4, (z), m = N, N-1, N-2, ....... , 1,

according to the recursive equation

1-K

Am—l (Z) =

where the coefficients K, are defined as
K, =a,(m)

The Schiir Cohn stability test states that the polynomial A(z) has all its roots inside the unit
circle if and only if the coefficients K, satisfy the condition |Km| <1l forallm=1,2, ....,
N.

Pre-Lab Exercises — D:

Write a generalized program in MATLAB which takes the coefficients of the denominator of
a system transfer function as input and tests the system stability by Schiir Cohn stability test
method.

Algorithm:

e Take the inputs from the user.

e Seta,(k)=a, for k=12,------ ,N

e Set K, =a,(N)

e Thenfor m=N,N—1,----- 1, compute K, =a,(m) where a, ,(0)=1
ky-K b, (k

am( ) r; m( )’ k:1,2, ...... ,m_l

1-K,

where b, (k)=a,(m—k), k=01,------ ,m

e Then compute a, (k)=
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BUET

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING,
DHAKA-1000, BANGLADESH.

COURSE NO.: EEE 312

Experiment No. — 4
Phase I

Frequency domain analysis of DT signals and systems

Frequency analysis of signal involves the resolution of the signal into its frequency
(sinusoidal) components. For the class of periodic signals, such decomposition is called a
Fourier series. For the class of finite energy (aperiodic) signals, the decomposition is called
the Fourier transform.These decompositions are extremely important in the analysis of LTI
system because the response of an LTI system to a sinusoidal input is a sinusoid of same
frequency but of different amplitude and phase. Furthermore, the linearity property of LTI
system implies that a linear sum of sinusoidal components at the input produces a similar
linear sum of sinusoidal components at the output, which differ only in the amplitudes and
phases from the input sinusoids.

Pre Lab Concerns:

Read this lab description carefully before coming to the laboratory class,
so that you will know what is required.

Try to follow the lecture notes of EEE 311.

The problems that will be given in the class may differ from the given ones
but they will certainly cover the syllabus.

Students must not use the function fft() unless instructed to do so. It is
desired that students write codes to calculate DTFS coefficients, DTFT,
and DFT coefficients from first principles.

You will be able to solve the problems in lab if you do practice before coming to
class.

Do not bring any prepared MATLAB code in the lab with any portable
device.

New Functions:

freqz(), fft(), fftshift(), dftmtx()
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Part— A

Introducing DTFS, DTFT, DFT

DISCRETE TIME FOURIER SERIES (DTFS)

Let us consider a periodic sequence x(n) with period N, that is x(n) = x(n+N) for all n. The

Fourier series representation of x(n) consists of N harmonically related xponential functions
Jj27kn

e VN k=0L.,N-1

And expressed as
J2nkn

N-1
x(n) = che N
k=0

This equation is often called the discrete-time Fourier series (DTFS). Fourier co-efficients
{ck}, k=0,1,....,N-1 provide the description of x(n) in frequency domain.
{ck}can be computed as

1 N-1 _ J27kn
c, = — x(n)e N
i ~ Z;) (n)

Note that Cyin=Cx.
That is, {ck} is a periodic sequence with fundamental period N. Thus the spectrum of a signal
x(n), which is periodic with period with period N, is a periodic sequence with period N.

Average power can be given as
N -1 ) 1 N -1 )
D N 0
k=0 n=0

The sequence |ck|2 for k=0,1,...... ,N-1 is the distribution of power as a function of frequency
and is called the power density spectrum of the periodic signal.

If the signal x(n) is real [x*(n)zx(n)],then, it can be shown that
Ci =C.. Again the following symmetry relationship holds

|Ck|:|CN—k| and /o= Lenk
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cnl|= and /cne=0 ifNiseven

2

cN
2

|C(N—1) / 2|:|C(N+1) / 2| and Zcnny2=-Lenty2  1f Nis odd

CALCULATION OF FOURIER SERIES COEFFICIENTS

Let us consider a continuous rectangular pulse sequence of 1 ms period and pulse width 0.1
ms. The signal is sampled at 100kHz and sampled discrete with 7 its index is shown in figure
1(b).

(a) Original continuous signal
15 T T T T T T T T T

X(t)

0.5 .

5w a3 2 0 1 2 3 4 5
Time (seconds) « 107
(b) Sampled discrete signal

I:I 4 Fi Fi Fi 4 Fi 4 i Fi

A0 400 300 A0 -10 a 10 20 30 40 a0

Inclex, n
Figure 1. A rectangular pulse in continuous domain and its sampled version.

Now the following MATLAB code calculates the Fourier series coefficients from the first
principle and from the Fourier series coefficients, again reconstructs the original periodic
sequence.

%Example 1
%CALCULATION OF FOURIER SERIES COEFFICIENTS

clear all;
Fs=100e3;
dt=1/Fs;

%GENERATING THE RECTANGULAR PULSE TRAIN

T=1e-3; %PERIOD OF THE PULSE TRAIN
D=.1; %DUTY CYCLE

PW=D*T; %PULSE WIDTH

f=1/T; %ANALOG FREQUENCY
t=-T/2:dt:T/2; %TIME INTERVAL FOR A PERIOD
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n=t/dt; 9%INDEX FOR DATA POINTS IN A PERIOD

L=PW/dt; 9%DATA POINTS IN THE THE HIGH TIME
x=zeros(1,length(t)); %INITIALIZING A SINGLE RECTANGULAR PULSE
x(find(abs(n)<=L/2))=1.1; %GENERATION OF A SINGLE RECTANGULAR PULSE

%END OF RECTANGULAR PULSE TRAIN

figure(20), subplot(211), plot(t, x, 'k','linewidth’, 2), xlabel("Time (seconds)’, ‘fontsize’, 14), ylabel('x(t)’,
‘fontsize’, 14), title('(a) Original continuous signal’, ‘fontsize’, 14);

subplot(212), stem(n, x, '.k', ‘linewidth’, 2);xlabel(‘'Index, n', ‘fontsize’, 14), ylabel(*x(n)', ‘fontsize’, 14),
title("(b) Sampled discrete signal’, ‘fontsize’, 14);

N=length(x); %TOTAL NO DATA POINTS IN A PERIOD
Nc=N; € 9%TOTAL NO OF COEFFICIENTS
if mod(Nc,2)==0,
k=-Nc/2:Nc/2-1;
else
k=-(Nc-1)/2:(Nc-1)/2;
end

c=zeros(1,length(k));%INITIALIZING FOURIER COEFFICIENTS

for il=1:length(k),
for i2=1:length(x),

LA _ o
c(i1)=c(il)+1/N*x(i2)*exp(-i*2*pi*k(i1)*n(i2)/N); éck = I z x(n)e N
n=0
end
end

figure(2), subplot(211), stem(k,abs(c), ".k', 'linewidth’, 2); xlabel('k’, ‘fontsize', 14), ylabel(‘|c_k]",
‘fontsize’, 14), title("Fourier series coefficients c_k', ‘fontsize’, 14);

subplot(212), stem(k,angle(c)*180/pi, '.k', 'linewidth’, 2);xlabel(’k’, 'fontsize’, 14), ylabel(‘'angle(c_k)",
‘fontsize’, 14)

figure(3), stem(k*f,c, ".k', 'linewidth’, 2); xlabel("Frequency (Hz)', ‘fontsize’, 14), ylabel(‘'c_k’', 'fontsize’,
14), title("Fourier series coefficients c_k', 'fontsize’, 14);

%START OF RECONSTRUCTION OF SIGNAL
t_ remax=T/2; <
t_re=-t_remax:dt:t_remax;

n_re=t_re/dt;

x_re=zeros(1,length(n_re));

for il=1:length(k),
for i2=1:length(x_re),

N-1 J27kn
x_re(i2)=x_re(i2)+c(i1)*exp(i*2*pi*k(il)*n_re(i2)/N); € |x(n) =che N
k=0

end
end
9%END OF RECONSTRUCTION OF SIGNAL

figure(4),subplot(211), stem(n_re, x_re,".k’, ‘linewidth’,2);xlabel('n’, ‘fontsize’, 14),
ylabel('x_{reconstructed}', 'fontsize’, 14), title("Reconstructed signal’, 'fontsize’, 14);
subplot(212),plot(t_re, x_re,'k',0,0, ‘linewidth',2);xlabel(‘t", ‘fontsize’, 14), ylabel("x_{reconstructed}',
‘fontsize’, 14), title('Reconstructed signal’, ‘fontsize’, 14);
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Fourier series coefficients c,

_EDD | | 1 | | | |
A0 400 50 =20 -10 a 10 20 30 40 &0

Figure 2: Magnitude and phase spectrum of the discrete time signal. Note that the phase
spectrum is not skew-symmetric with respect to k=0. It is an artifact of MATLAB and 6=
+180° and -180° are in fact synonymous.

Fourier series coefficients c,

0.1z

0.1

0.0s

0.06

G° 004

0.0

0 p,,mnn.q ;I“"hr‘ T| L 'Tﬂ"]hr‘ Al
I i ll“"ll ll”“ll I 1]

002 F

-0.04 : :

] -4 -3 -2 -1 a 1 2 3 4 ]
Frequency (Hz) w107
Figure 3. Fourier series coefficients of the continuous time signal and indexed with respect to

the analog frequency.
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Power density spectrum |::k|"2

0015
0.01
o
=
L
0.005 “ h
0 . m—fﬂl&-ﬂ]' |It-r.m1t_u:m o .
&0 0 a0
k
Reconstructed signal
o r
o
=
205}
[
[
=
> 0 A . . A A . . . .
S0 40 30 20 0 0 10 20 30 40 A
n
Reconstructed signal
= 1t ]
0
=
2 05¢ i
[
[
N
4 0 ) . ) ) |

-5 -4 -3 -2 -1 1l 1 2 3 4 5
t %107
Figure 4. Reconstructed signal.

Now vary t_remax (marked with <in the code) in the code and observe that a periodic
repetition is obtained.

Reconstructed signal (t_remax =3'T)
2 T T T T

I | | |

reconstructed

X

Figure 5. Periodic repetition of reconstructed signal.
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Now change the total number of coefficients Nc¢ (marked with €<in the code) to 3*N and
observe the periodicity of ¢; with respect to n.

Fourier series coefficients c,

0.15

0.1
G< 005

..

_DDE | | | |
-1580 -100 -A0 a a0 100 140

Figure 6. Periodicity of Fourier coefficients.

Now observe when we set the total number of coefficients to less than N.

Reconstructed signal
1.4

Me=0.1M

121

Me=0.5M

0.s .
Fs=20" Hz

0.6

reconstructed

0.4

X

0.z

_Dz | 1 | | | | | | 1 |
5 . . .

Figure 7. Effect of taking less no of FS coefficient in reconstructing the signal. Note that the
higher number of coefficients we take the better the reconstructed signal matches with the
original signal
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m MSE vs Total no. of coefficient
m T T T T T

S 00t ;
o

= 006} ;
@

@

= 004t ;
=

O

o 002} ;
=

18]

@ ik : i 7 r

= 0 0.2 0.4 05 0.8 1

N /N
C
Figure 8. Change of mean square error with the increase of total number of coefficient. Note
that the higher no of coefficient we take the smaller the MSE and MSE=0 when Nc=N.

Now generate a sinc function using a the following codes and examine its Fourier series
coefficients. The results are shown in figure 5.

%GENERATING A SINC PULSE
T=1e-3;

f=1/T;

t=-2*T:dt:2*T;

n=t/dt;

X=sinc(2*f*t);

N=length(t);

%END OF SINC PULSE

Original continuous signal Fourier series coefficients ¢_
1 - : 0.15
0.1
__ns¢
1 G° 005
0
D aaaaa '.""I I PR
05— : : -0.08 : : : :
5 0 5 2 - 0 1 2
Time (seconds) ;. 17* Frequency (Hz) , 10*
(a) (b)

Figure 6. Periodic sinc pulse sequence and its Fourier series coefficients.
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Exercise:

1. Note that in the example 1, the time interval is defined from —T/2 to T/2, Change the
interval to 0 to T and to —T/4 to 3T/4. Do you observe any change in the magnitude
spectrum? Try to explain the observation. Change the interval to —T to T. Explain the
observation.

2. We have stated that ¢y =c;. Modify the code for example 1 and see whether you a
periodic repetition of ¢;.

N=length(x);

if mod(N,2)==0,
k=-N:N;

else
k=-(N-1):(N-1);

end

(98]

Take a sine wave and determine in spectrum.
4. Derive the power density spectrum for a rectangular pulse train.

DISCRETE TIME FOURIER TRANSFORM (DTFT)

If x(n) is absolutely summable that is z |x(n)) < oo then its discrete time Fourier transform

— 0

is given by

0

X(@) = Y x(me " (1)

Now w is a real variable between -« to +o but one important property of X(w)1s its
periodicity in ® with period 2:1. So we only need one period of X(w) i.e. ® € [0,21] or
[_Ha H]'

The inverse DTFT equation, in other words the equation for reconstructing the signal from
X(w) is given by
1 )
_ Jjon
x(n) = e J;”X(a))e do

CALCULATION OF FOURIER TRANSFORM FROM FIRST PRINCIPLE

Since the frequency is continuous variable, DTFT cannot be implemented in digital hardward
in rigorous sense. By defining a fine grid of frequency in the range [-x, ]

the frequency variable is usually handled in DTFT implementation. In MATLAB we
evaluate X(w) at equidistant frequencies between [0,211] and then interpolate using plot()
function.

Say we want M equidistant samples between [0,21]

Then o, = % , k=0,1,.....,M-1 . Then (1) van be written as
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ny . 2 7tkn

X@) = Y e M xn) wherek=0,1,....M-1 (2)

n=n

Although matrix method may be an easier approach for DTFT in some cases, we first
examine calculation DTFT of an aperiodic signal from first principles in the following
example

%Example 2
%CALCULATION OF FOURIER TRANSFORM FROM FIRST PRINCIPLE

clear all;

%GENERATING A SINC PULSE

f_c=1/8; %DEFINING FREQUENCY VARIABLE FOR SINC PULSE
n=-40:40; %DEFINING THE INDEX FOR SINC PULSE
x=sinc(2*f_c*n);

%END OF SINC PULSE

figure(1), stem(n, X, ".k");xlabel(‘'n’, ‘fontsize’, 14), ylabel(‘x(n)’, ‘fontsize’, 14), title('Discrete time signal’,
‘fontsize’, 14);

M=101; %NUMBER OF POINTS IN DIGITAL FREQUENCY GRID
w=linspace(-pi, pi, M);  %DEFINING THE DIGITAL FREQUENCY GRID

dw=w(2)-w(1);: %RESOLUTION OF DIGITAL FREQUENCY
X=zeros(1,M); %INITIALIZING THE DTFT OF x(n)
for il=1:M,

for i2=1:length(x),

0 .
X(I1)=X (1) +x(i2)*exp(-*w(il)*n(i2)); € | X (w) = z x(n)e” /"
n=-w
end

end

figure(2), plot(w,abs(X), 'k', 'linewidth’, 2); xlabel(‘Frequency (rad/sec)’, ‘fontsize’, 14), ylabel(*X(w)’,
‘fontsize’, 14), title("FREQUENCY SPECTRA', 'fontsize’, 14);

%RECONSTRUCTION OF SIGNAL
n_re=-80:80;
x_re=zeros(1,length(n_re)); %INITIALIZING RECONSTRUCTED SIGNAL

for il=1:M,
for i2=1:length(x_re),

1 )
x_re(i2)=x_re(i2)+1/(2*piy*X(i1)*exp(-i*w(i1)*n_re(i2))<dw; € |x(n) = Z—L X(w)e’"dw
72' T

end
end
figure(3), stem(n_re, x_re,".k’, ‘linewidth’,1);xlabel('t', 'fontsize’, 14), ylabel('x_{reconstructed}’,
‘fontsize’, 14), title('Reconstructed signal’, ‘fontsize', 14);
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Frequency sprectum

Discrete time signal 5

| v

‘ ‘ 2
> 5]
gt iR -I I- R ’
1y} l“ ”l )

05 : : : - 0 A b

-20 -10 a 10 20 -4 -2 a 2 4
n Frequency (rad/sec)
Figure 6. A sinc pulse (discrete) Figure 7. Magnitude spectrum of the signal

Reconstructed signal

05+

recanstructed

X

. . RilR I‘ ‘I I, o
T 1" ”1 iy

05 1 1 1 ]
-40 -20 a 20 40

n
Figure 8. Sinc pulse reconstructed using inverse DTFT. Note the differences in original and
reconstructed signals.
Now consider a sinc’ pulse and observe its frequency spectrum.

Discrete time signal {sincz}

et ) Frequency sprectum
0.8}
3 L
— DE r —
= B!
> 04} ><
0.2} i
D g i -'I-o..'l"..l I...'T'I-..o'l-o..-o- FTT T Y |:| L
20 -10 0 10 20 -4 -2 0 2 4
Frequency (rad/sec)
(a) (b)

Figure 9. A sinc’pulse (discrete) (a) and its frequency spectrum.
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Now let us examine what happens if reconstruct the signal considering only a limited range
of frequencies.

Rectangular pulse Reconstructed signal, w=[-pif 10 pif10]
18]
1.5

o
1 =
— Pt
c W
" =
> o
[
04& &
=
0 bsssnssnsenrnnd 05 L 1 1 1
-40 -0 d 20 40 -40 -20 0 20 40
n n

Recon% signal, w=[-pifd pifa]

1.8

1.2
1
0.6
0.6
0.4

reconstructed
reconstructed

X

A0 0 0 70 40 025 o0 ] o0 a0

Figure 10. Effect of taking a limited number of frequencies in reconstructing the signal for
DTFT.
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DTFT EQUATIONS IN MATRIX FORM:

We can arrange DTFT equations in Matrix form.
Let w be the vector containing M, frequency points between [0,211]

x be the data sequence having N data points
n be the time index vector

X=wx" 3)

where W is an MxN matrix defined as,

B e~/ e~ /@@n) e /() e~ /@On(N=D) 7
PRIOLIO) PRIOLI PRIOLIE) e JeMn(N-D
W= e /e@m(0) e Je@n) e je@n(2) L prje@n(-D
e—jw(M—l)n(O) e—jw(M—l)n(l) e—ja)(M—l)n(Z) e—ja)(M—l)n(N—l)

The following example calculates the DTFT of a sequence x=[1, 3, -9, 5, 10];

%Example

%MATRIX IMPLEMENTATION OF DTFT

x=[1, 3, -9, 5, 10];

nl=-1; %DEFINING THE INDEX OF FIRST ELEMENT OF x

n2=3; %DEFINING THE INDEX OF THE LAST ELEMENT OF x

n=n1l:n2;%INDEX OF x

M=500; %TOTAL NUMBER OF POINTS IN THE FREQUENCY RANGE

w=(-M/2:M/2)*2*pi/M; %FREQUENCY GRID

W=exp(-j*w'*n); % Matrix formation

X=W*x";

figure(1), subplot(211),plot(w/(2*pi),abs(X),'k’, ‘linewidth’, 2), xlabel('Digital frequency, f', ‘fontsize’,
14), ylabel('|X(f)]', ‘fontsize', 14), title("Magnitude Spectrum’, 'fontsize’, 14);
subplot(212),plot(w/(2*pi),angle(X)*180/pi, 'k’, 'linewidth’, 2), xlabel('Digital frequency, f', 'fontsize’, 14),
ylabel(‘angle(X(f))', ‘fontsize', 14), title('Phase Spectrum', ‘fontsize', 14);
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Magnitucde Spectrum

IX(f)

|:| 1 |

05 04 03 02 01 0 01 02 03 04 05
Digital frequency, f

Phase Spectrum

EI:II:I T T T T T T T T T

angle(X(f))

_2':":' | | | 1 | | | | |
05 04 03 02 07 a 0.1 0.2 03 0.4 0.4

Digital frequency, f
Figure 11. DTFT of sequence calculated by matrix method.

Problems (1-4 for Example 2):

1. Increase the range of the frequency grid to [0, 2wt]. Observe and explain the effects.

2. Change the range of the frequency range to [-2m, 2rt]. Obsevre and exaplain the
effects.

3. Verify the effect of changing index (n) to -40:120, -40:80. In each case observe the
reconstructed signal.

4. If you reconstruct the signal in n_re=-240:240, why do you get a repetition of the
aperiodic signal?

5. Consider the continuous time signal shown in figure 12. Sample it and then find out
the Fourier transform in terms of the analog frequency.

6. Verify the duality property of DTFT with rectangular pulse and sinc function.
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Continuous time signal
15 T T T T T T T

-1.5 1 1 1 1 1 1
002 0015 001 000 0O 0005 001 OO15 002

t (seconds)
Figure 12. Figure for problem 4.

DTFT & Z-TRANSFORM:

Fourier transform can be viewed as the z-transform of the sequence evaluated on the unit circle.

o

= X(w) = z x(n)e /"

n=-0

X(2)

z=el®

If X(z) does not converge in the region |z| = 1 i.e if the unit circle is not contained in the region of

convergence of X(z), the Fourier transform X(w) does not exist.

Example:

Determine frequency response H(w) of a system characterized by h(n)=(0.1)" u(n).Plot the magnitude
and phase responses.

Now, H(z) = ﬁ ROC: |2/ > 0.1 (as causal)

Z—l
Clearly ROC includes the unit circle hence DTFT exists. So

1

H(@) =10
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CALCULATING THE DTFT OF DT SIGNAL/SYSTEM DEFINED IN Z-
DOMAIN

MATLAB function freqz(num,den,w) returns the frequency response(DTFT) vector H calculated at
the frequencies (in radians per sample) supplied by the vector w of the DT signal or system defined in
Z-domain by the Z-transform formed by (num, den). The following example calculates the DTFT of
function which is defined by its Z-tranform.

%Example

%RELATIONSHIP BETWEEN Z-TRANSFORM & DTFT

k=256;

w=-pi:pi/k:pi;

num=1;

den=[1 -0.1];

H=freqz(num,den,w);

figure(1), subplot(211),plot(w,abs(H),'k"', ‘linewidth’, 2), xlabel(‘'w (rad)’, ‘fontsize', 14), ylabel('|X(w)]|",
‘fontsize’, 14), title("Magnitude Spectrum’, ‘fontsize’, 14);
subplot(212),plot(w,angle(H)*180/pi, 'k’, 'linewidth’, 2), xlabel(‘'w (rad)’, ‘fontsize', 14),
ylabel(‘angle(X(w))*, ‘fontsize’, 14), title(‘Phase Spectrum’, ‘fontsize’, 14);

Magnitucle Spectrum Phase Spectrum

2 0 > 2 0 >
w (rad) w (rad)
1

Figure 13. DTFT of the signal having the Z-transform, H(®) = W
—0.1e
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DISCRETE FOURIER TRANSFORM (DFT)

We know that aperiodic finite energy signals have continuous spectra (DTFT).

X(w) = Z x(n)e” /" In case of a finite length sequence x(n), 0<n<L-1., Then only L

values of X(w) over its period, called the frequency samples, are sufficient to determine
x(n) and hence X(m). This leads to the concept of discrete Fourier transform (DFT) which
is obtained by periodic sampling of X(w) (DTFT).

We often compute a higher point (N point) DFT where N > L . This is because padding
the sequence x(n) with N-L zeros and computing an N point DFT results in a “better
display” of the Fourier transform X(m).

To summarize, the formulas are (for causal sequence)

N-1 _ 27k L-1 _ J2zkn
X(k) = z x(me N = z x(nje N (DFT), k = O0l.., N — 1
n=0 n=0
1 N-1 J27kn
x(n) = — z X(k)e N (IDFT), n = OL...N — 1
k=0

In fact (3) is nothing but general DFT matrix equation.

X=Wy X DFT equation
X:%WN* X IDFT equation

Where Wy=e?*"N

x=[x(0) x(1) ...... x(N-1) 1"
X=[X(0) X(1) ...... XN-D]"
n
11 1 1]
1w, W, w, M
W= (1 ow, ow)t w2k
1 WN.N_‘ WNzl(N‘” WN&V‘”Z_'

Note : Wy matrix can be generated by dftmtx() function.
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The following example calculates the 5 point DFT of the sequence, x(n)=[110 0 1].

%Example

%CALCULATION OF 5 POINT DFT

clear all;

x=[1,1,0, O, 1];

N=5;€ %NO OF FREQUENCY SAMPLES

L=length(x);

X=[x zeros(1,N-L)]; %ZERO PADDING

n=length(x);

n=0:N-1; %INDEX OF DATA SEQUENCE

k=0:N-1; %INDEX OF FREQUENCY SAMPLE

Wn=exp(-j*2*pi/N);

WN=Wn.N(n"*k);

X=WN*x"; %DFT

figure(1), subplot(211),stem(k/N,abs(X),'k’, ‘linewidth’, 2), xlabel('Digital frequency, f (Hz)', ‘fontsize’,
14), ylabel("|X(f)]', ‘fontsize', 14), title("Magnitude Spectrum’, ‘fontsize', 14);
subplot(212),stem(k/N,angle(X)*180/pi, 'k', ‘linewidth’, 2), xlabel('Digital frequency, f (Hz)', ‘fontsize’,
14), ylabel(‘angle(X(f))', 'fontsize', 14), title("Phase Spectrum’, 'fontsize’, 14);

abs(X)

angle(X)*180/pi

OUTPUT OF EXAMPLE

abs(X) =

3.0000 1.6180 0.6180 0.6180 1.6180
angle(X)*180/pi=

0 0-180.0000 -180.0000 0.0000

Magnitucle Spectrum Phase Spectrum
@ 50
25 (W = 3
2| =
— = G0}
= o o X
=< 15} D
= © 100}
1t
o
e 180t
o Q
0 -200 : : : -
0 1 2 3 4 0 1 2 3 4
k k

Figure 14. Plot of DFT

In order to understand the effects of zero padding, we set N=1000, plot the coefficients
with respect to digital frequency, f=k/N. Then same plot the coefficients of 5-point DFT
with respect to f. You should appreciate the fact that that the coefficients for 5-point
DFT are actually samples from the DTFT.
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angle(X(f)

IX(H)]

200

-200

Magnitude Spectrum

EEE 312

Digital frequéncy. f (samples/cycle)

Figure 15. Effect of zero padding.

Parseval’s Theorem:

It states that if x(n) #)X (k) then

3 x(n)x (n) = %Z X)X (k)

N-1 , 1M 2
ie) |x(n) :NZ|X(1¢)|
n=0 k=0

Hence energy is conserved in each domain.

1 | | | | |
o1 02 03 04 058 06 07 08 098 1
Digital frequency, f (samples/cycle)
Phase Spectrum
1 N N | 1 | |
0 01 02 03 04 05 06 07 08 09 1

%Example

%VERIFICATION OF PERSEVAL'S THEOREM
x=ones(1,10);
Et=sum(x.*x);
X=fft(x,128);

Ef=sum(X.*conj(X))/128

RESULTS
Et =

10
Ef

Ef =

10.0000
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IMPORTANT PROPERTIES OF DFT:

1. Periodicity: If x(n) and X(k) are an N-point DFT pair, then
X(n+N)=x(n) for all n
X(k+N)=X(k) for all k

2. Linearity:
If

x, () <2225 X (k)

And

x, (n) <25 X (k)

Then for any real valued or complex valued constant a; and a;
a,x,(n)+a,x,(n) <« >a X, (k)+a,X, (k)

3. Time reversal of a sequence:

x(~m))y = x(N = n)«2LT 5 X((~k)), = X(N ~ k)

4. Circular time shift reversal of a sequence:

x((n _ Z))N N-DFT X(k)e—iZﬂkI/N

5. Circular frequency shift :
x(n)e ™ P X ((k-1)),,

The following example illustrates the circular frequency shift property.

%Example

%CIRCULAR FREQUENCY SHIFT

clear all;

x=[1, 0,1, 0O, 1];

N=10; %NO OF FREQUENCY SAMPLES
L=length(x);

x=[x zeros(1,N-L)]; %ZERO PADDING
n=length(x);

n=0:N-1; %INDEX OF DATA SEQUENCE
k=0:N-1; 9%INDEX OF FREQUENCY SAMPLE

1=3; %SHIFT

for ii=1:N,
x(ii)=x(ii)*exp(i*2*pi*ii*I/N);

end

Wn=exp(-j*2*pi/N);
WN=Wn."N(n"*Kk);
X=WN*x"; %DFT

figure(1), subplot(313),stem(k,abs(X),'k’, 'linewidth’, 2), ylabel("|X(k)]', ‘fontsize', 14), title("Magnitude
Spectrum’, ‘fontsize', 14)%, xlabel('k’, 'fontsize’, 14);
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Figure 16. Circular frequency shift.

Sampling theorem revisited:

For example, sampling x,(t) periodically at T seconds, we get
x(n)=x,(nT) —o<n<o

If x4(t) is an aperiodic signal with finite energy, then its spectrum can be given as

X (F)= j x, (e dy

—00

Spectrum of discrete time signal is given by

0

X(f)= 2 x(mye "

The relationship of spectra between continuous and discrete time signal can be obtained
as

X(f)=F i X.[(f—k)F] [Recall that, f= F/Fy]

k=—0

[See Proakis for proof.]
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Example :

Consider, the aperiodic finite energy signal

” sinc?(100), || <1,
m =
? 0, otherwise

where, t, = 0.1s . Baseband BW of the signal is 100 Hz. Show the spectra of the sampled signal
for F;=4BW , F,=2BW , F,=1.25BW and F; = BW.

Spectra for fs=4BW
4 T T

3L 4

0 | . | . L . | . |
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Spectra for fs=2BW
2 T T

L

0 | | | |
-500 -400 -300 -200 -100 0 100 200 300 400 500
Frequency(Hz)

Spectra for fs=1.25BW
1.5

CAAAAL A

| | | 1 | | |
-400 -300 -200 -100 0 1nn 200 300 40(
Spectra for fs=Bw

1 1 1 L 1 1 1

0 L L
-250 -200 -150 -100 -50 0 50 100 150 200  25(
Frequency (Hz)

Figure 17: Spectra of signals sampled at different rate
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The MATLAB codes for these figures are

given below.
clear all
close all

%fs=4*BW

to=.1;

ts=.0025;

fs=1/ts;

nup=round(to/ts);

nlo=-nup;% generate time index
n=nlo:nup;

t=n*ts;

m=(sinc(100%t))."2;

N=1024;% FFT bin size ,after zero padding
fn = [0:1/N:5-1/N]*fs-5*fs/2;

k=0:5*N-1;

WN=exp(-j*2*pi/N);

nk=n"*k;

W=WN."nk;

M=m*W;

%M=fft(m,1024);
subplot(211),plot(fn,abs(fftshift(M)),0,0)%

%fs=2*BW

ts=.005;

fs=1/ts;

nup=round(to/ts);

nlo=-nup;% generate time index
n=nlo:nup;

t=n*ts;

m=(sinc(100%*t))."2;

N=1024;% FFT bin size ,after zero padding
fn = [0:1/N:5-1/N]*fs-5*fs/2;

k=0:5*N-1;

WN=exp(-j*2*pi/N);

nk=n"*k;

W=WN."nk;

M=m*W;

Y%M=fft(m,1024);
subplot(212),plot(fn,abs(fttshift(M)),0,0)%

%fs=1.25*BW

ts=.008;

fs=1/ts;

nup=round(to/ts);

nlo=-nup;% generate time index
n=nlo:nup;

t=n*ts;

m=(sinc(100%*t)).”2;

N=1024;% FFT bin size ,after zero padding
fn = [0:1/N:5-1/NJ*fs-5*fs/2;

k=0:5*N-1;

WN=exp(-j*2*pi/N);

nk=n"*k;

W=WN."nk;

M=m*W;

%M=fft(m,1024);

figure(2)
subplot(211),plot(fn,abs(fftshift(M)),0,0)%

%fs=BW

ts=.01;

fs=1/ts;

nup=round(to/ts);

nlo=-nup;% generate time index
n=nlo:nup;

t=n*ts;

m=(sinc(100*t))."2;

N=1024;% FFT bin size ,after zero padding
fn =[0:1/N:5-1/N]*fs-5*fs/2;
k=0:5*N-1;

WN=exp(-j*2*pi/N);

nk=n"*k;

W=WN."nk;

M=m*W;

%M=fft(m,1024);
subplot(212),plot(fn,abs(fftshift(M)),0,0)

This laboratory manual is prepared by

Toufiqul Islam & Asif Islam Khan

and supervised by

Prof. Md. Kamrul Hasan

©Dept of EEE
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BUET

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING,
DHAKA-1000, BANGLADESH.

COURSE NO.: EEE 312

Experiment No. — 4
Phase 11
Frequency domain analysis of DT signals and systems
% Example teaches better than precept — S.Smiles
In this phase, we will concentrate on major DFT applications such as linear and circular

convolutions, estimation of correlations, frequency analysis, modulation and
demodulation last but not the least applications in communications such as FDM.

Pre Lab Concerns:

= Read this lab description carefully before coming to the laboratory
class, so that you will know what is required.

» Try to follow the lecture notes of EEE 311.

* The problems that will be given in the class may differ from the given
ones but they will certainly cover the syllabus.

= Students must not use the function fft() unless instructed to do so. It is
desired that students write their own codes to calculate DFT
coefficients from matrix equations.

» Theoretical derivations are avoided in the manual. You can get the
proofs in your textbook.

* Do not bring any prepared MATLAB code in the lab neither in written
form nor in any portable device.

New functions used :

mod (), gallery (), ifft (), convmtx ( ), hanning (), fir2 ()
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1. Review of DFT :

The Fourier transform of a sequence is readily obtained from its z-transform simply by
setting the complex variable z equal to exp(jw). When the sequence of interest has a finite
duration, we may go one step further and develop a Fourier representation for it by
defining the discrete Fourier transform (DFT). The DFT is itself made up of a sequence
of samples, uniformly spaced in frequency. The DFT has established itself as a powerful
tool in digital signal processing by virtue of the fact that there exits efficient algorithms
for its numerical computation such as FFT.

Consider a finite duration causal sequence x(n), assumed of length N, then N-point DFT
is given as
_j27kn

N-1
X(k)y=Y x(me ", k=0,1,..,N-1
n=0

Note : Limit of summation will change for anticausal and non-causal sequences.

The N-point inverse DFT (IDFT) of X(k) is defined by

J2mkn

N-1
x(n):iZX(k)e N n=01,...N-1
Nk=0

The DFT has an interesting interpretation in terms of the z-transform: the DFT of a finite-
duration sequence may be obtained by evaluating the z-transform of that same sequence
at N points uniformly spaced on the unit circle in the z-plane. This sampling process is
illustrated in the following figure (for N=8).

Im

Unit
circle

Re

z-plane

Figure 1: A set of 8 uniformly spaced points on the unit circle in the z-plane.

Though the sequences x(n) and X(k) are defined as finite-length sequences, in reality they
both represent a single period of their respective periodic sequences. This double
periodicity is the direct consequence of sampling a continuous time signal as well as its
continuous Fourier transform.
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2. Implementing convolutions using the DFT:

2.1 Circular Convolution:

If an N point sequence is shifted in either direction, then the result is no longer between

0 <n < N-1. Therefore we first convert x(n) into its periodic extension x,(n) and then
shift by m samples to obtain x,(n-m). Then finite duration sequence

x'(n) = Xp(n-m) for 0 <n < N-1

0 otherwise

=x((n-m))x (Represented as modulo-N index) [See Proakis for details]
Example:

X =[f 2345];
Circularly shifting x by 2 samples will yield
x'= [? 5123];
5 T T T T T T T )
4r @ .
=7 |
=gl |
T 1
|:I'I 1 .I5 2 2.I5 3 3.I5 4 fl.l5 5
n
a T o T T T T T
A -
= 3r q
= ]
1 T -
D1 1 .I5 2 2.I5 3 3.I5 4 fl.l5 5
n
Figure 2 : Two sample circular right shift.
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function [y,x]=cirshft(x,m,N) % for circular shifting
x=[x zeros(1,N-length(x))];

n=0:N-1;

n=mod(n-m,N);

y=x(n+1);

Circular convolution of x;(n) and x»(n) can be given as

N-1

y(n)= le (n)x,((m—n)), (N be the length of longest signal vector)
n=0

[See Proakis for illustration]

For two 4 point sequence X; and X,  above equation can be written in matrix form

yO) | (%000 x,G) x,(2) x,(1) | x(0)
YA | x@ x0) Q) x,@2) | X 1)
Q)| |22 w0 00 xE)|xQ)
YA ] [%0) %2 x1) %0 xE)

where,

x =[x 0) xO x@2) xO)
Xy =[x,(0) x,(1) x,(2) x,3)];
y=[©O) yO y2) y3)l;

In MATLAB, circular convolution can be obtained easily by matrix operation
y = gallery('circul',x2)'*x1"; % gallery function returns some basic test matrices.

gallery('circul',x2)" gives the circulant matrix of x,
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2 T {-} T G T
E 14 1
=
D | | |
1 15 2 2.5 3 3.5 4
"Il T T r‘: T T
=, 2F P 1
=
o
I:l | | |
1 1.5 2 25 3 3.5 4
15':} T T T T T I:}
[y
_1of .
=
= T _
|:| | | |
1 1.4 2 25 3 3.5 4

I

Figure 3: Showing sample circular convolution, y(n) of x;(n) and x,(n)

2.2 Multiplication of two DFTs and Circular Convolution:

Suppose that we have two finite duration sequences of length N, x;(n) and x,(n). Their
respective N-point DFTs are

_2znk

N-1 27znk
X(ky=Y x(me ¥ k=0,1,..,N-1
n=0

_2mnk

N-1
X,(k)=Y x,(me ¥ k=0,,.,N-1
n=0

It can be shown that multiplication of the DFTs of two sequences is equivalent to the
circular convolution of the two sequences in the time domain. [See Proakis for proof]

Y =3 %, (0, (m = m)),

= %,(1) ® x, (m) —2T> Y (k) = X, (k) X, (k)

where, ® denotes circular convolution.
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If x; and x, are column vectors then circular convolution by DFT can be obtained in
MATLAB as

y=1fft( frt(x1) .* ffrt(x2) );
2.3 Linear Convolution:

Suppose that we have input, x(n) of length L and filter response,h(n) of length M i.e

x(m)=0 n<0 andn>L
h(n)=0 n<0 andn>M

Then output response, y(n) can be given as

M-1
y(n) = Zh(k)x(n —k) , which is a linear convolution equation.
k=0

This equation can be expressed in matrix format,

For L =4 and M = 3, N = L+M-1 (length of convolved result, y)

or [ K@ 0o
4 (1) x(1) x(0) 0 h(0)
4 f) | ox@ x®) x(0) || A
'4 | x3) x(2) x()) h(2)
4 (5) 0 x3) x(2)
R T
_ — J

Convolution matrix of x
Very interesting technique, isn’t it?

In signal processing, the better you handle equations in matrix format, the less it takes for
MATLAB to compute.(and the more you excel as well !!)

For example, h=[123]andx=[1221];

Then convolution matrix of x in MATLAB is given by
>> convmtx(x,3)

ans =
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SO = NN =
S = NN = O
—_— NN = OO

Hence, result of linear convolution can be obtained as

>>x=[1221];
>>h=[1 2 3]’;

>> y=convmtx(x,3)*h
y =

—

2.4 Linear Convolution using DFT:

In previous section, we see that length of y(n) is N=L+M-1 . If the sequence y(n) is to be
represented uniquely in the frequency domain by samples of its spectrum Y(w) at a set of
discrete frequencies, the number of distinct samples must equal or exceed L+M-1.
Therefore, a DFT of size N > L+M-1 is required to represent {y(n)} in the frequency
domain.

Y (k) =X(k)H(k) , k=0,1,......N-1
{X(k)} and {H(k)} are the N-point DFTs of the corresponding sequences x(n) and Ai(n).

Since the sequences have a duration less than N, we simply pad these sequences with
zeros to increase their length to N. Obviously zero padding does not alter the spectra.

M -1 L+M-1
X(n) —>» | Zero-padding | __, | point DFT

| M1 sy
point IDFT

L-1 L+M-1
h(n) — | Zero-padding | — | point DFT

Figure 4: DFT based implementation of linear convolution.
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Continuing from previous example,

h=[123]andx=[1221];

Here N =6 then

h=[123000]; and x=[1 22 10 0]; Then in MATLAB , we can obtain the result as

y=1fft( ffe(x) .* ffe(h) );% by DFT approach
3. Correlation:

Remember that the cross-correlation equation can be written as

o0

ro() = D xmyn — D = x(n) * y(-n)

From properties of DFT, we know that
re () 23 X(Y(-k) = X(k)Y (k) (Cross-energy spectral density.)

For ergodic or power signal

N-1
P = o Xyt = D) 23 X @Y ()
n=0

Similarly ACF can be given as
Fo() 22 % XX (k) = % |x (k)|2 which is the discrete power spectrum of the
signal.

Hence one important application of autocorrelation is the estimation of the energy/power
spectrum density of the signal.

Example:
Find ACF of x(n) defined as follows:

x=[1 10 1]; We take length of x to be 4+4-1=7 samples by padding 3 zeros.
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x=[1101];

x1=[x zeros(1,length(x)-1)];

X1=fft(x1);

Xlconj=conj(X1);

Rx=fftshift(ifft(X1.*X1conj)); % Calculation from Frequency domain
rx=xcorr(x); % Calculation in time domain

Results:

Rx =

1.0000 1.0000 1.0000 3.0000 1.0000 1.0000 1.0000
X =

1 1 1 3 1 1 1

Exercise 3.1 :
Say, x;=rand(1,51) % random signal
X,(n)=sin(21(1000)n/10000); % 1000 Hz signal

Find PSD of x(n) where x(n)=x;(n)+x,(n); There from find ACF of x(n). Verify the result by
calculating ACF in the time domain.

4. Frequency analysis using DFT:

The finite observational interval (say, T,=LT, where L = number of samples and T = sample
interval) for the signal places a limit on the frequency resolution; that is it limits our ability to
distinguish two frequency components that are separated by less than 1/T,= 1/(LT) in frequency.

For example,

x(t) = sin2afit) + 0.05 sin(27f,t)
where,
fi=500Hz and f,=1000 Hz . Let f;=8000 Hz

Case 1 : Take length(x), N =40
Case 2 : Take length(x), N =32

40 -
a
ol (a)
X

;20—

10+

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
Frequency(Hz)
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20+
(b)
15+
|X| 10+
| R
oo @ ¢ P | | | P ? o o
-1500 -1000 -500 0 500 1000
Frequency(Hz)
151 (o} (o}
<«<——Strong component
(c)
10~
IX| Weak component
5 /
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
Frequency(Hz)

Figure 5: (a) - Magnitude Spectrum when N=40, (b) - Enlarged view for N = 40,

(c) - Magnitude Spectrum when N = 32.

% figure 5

£1=500;

£2=1000;

£s=8000;

ts=1/fs;

t=(0:4*fs/f2-1)*ts;
x=sin(2*pi*f1*t)+0.05*sin(2*pi*f2*t);

f=(0:length(t)-1)/(length(t)*ts)-1/(2*ts);
subplot(211),stem(t,x)
xlabel('Time(seconds)'),ylabel('x[n]')
subplot(212),stem(f,abs(fftshift(fft(x))))
xlabel('Frequency(Hz)"),ylabel('I X1")
axis([-4000,4000,0,401)

Several points are worthy to note:

a)
b)

d)

©Dept of EEE

Spectrum is not localized to f and f;. (for N =40 ).
The frequency components occur at integer multiples of Af= f/N i.e at multiples of 200
Hz. That means frequency of the stronger sinusoid is exactly between co-efficients at
400 and 600 Hz. However, a visual interpolation of these frequency co-efficients does
suggest a peak midway between 400 and 600 Hz that is stronger than either individually.
Leakage from the main spectral peak is readily apparent which causes the weak sinusoid
to be masked.

In later case, f; and f; are exactly multiple of Af (Here Af'= 250 Hz). that is, two sinusoids
exactly fit in this 32 point signal for integer number of cycles. So in that case, weak
component is not masked rather f; and f; spectral peaks are distinct. (fj = 2Af and f;

5Af)
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4.1 DFT of a simple sinusoid :

Consider , x(n) = cos(w.nT) where we choose w, = 2z(F, / 4) with F;=1. We are

using signal length N to be a power of 2 for fastest results. Here , N = 64.
Sinusoid at 1/4 the Sampling Rate

1 N N T ) ) L L L T N N N N ) T ) L L

Amplitude

Magnitude

Normalized Frequency (cycles per sample))

Figure 6: Spectrum when F(analog frequency) can be localized

Here, normalized frequencies are 0.25 (F/F;) and 0.75 or (0.75 — 1 =—0.25, -F/Fy).

4.2 DFT of a not-so-simple sinusoid:

F 1
Here, set W, = 27 (TS + 05 N) . .e. raising the frequency half-bin than before.
Sinusoid near 1/4 the Sampling Rate
1 % T f 7k % T —k
Amplitude
O |
Magnitude

. A L ALY 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (cycles per sample))

Figure 7: Spectrum when F cannot be localized.

In that case, sinusoid does not have integer number of cycles within N. So frequency of the
sinusoid is no longer integer multiple of the bin-size (1/N). Hence, it is not localized in the DFT-
bins. In fact, power, which was supposed to be confined in a single frequency component, spreads
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into the entire frequency range. We say that the power has ‘leaked out’ into the entire frequency
range. Consequently, this phenomenon is known as leakage. The following figure illustrates the
occurrence of leakage. Here, signal is zero-padded to get a fine spectral view.

N = 64, Nfft = 1024
40

Magnitude | |
S

|
T
I
I
I
I
1o
I
I
I
I
I
y - — -+ - — -+

0 mnnnre vann ‘ ‘
0O 01 02 03 04 05 06 07 08 09 1

Normalized Frequency (cycles per sample))

Figure 8: Interpolated spectrum after zero-padding.(DTFT)

4.3 Windowing to improve spectral estimation

The unavoidable act of finite data duration is equivalent to multiplying x(») by a rectangular
window w(n) of length L.

, 0 < n < L -1

0, otherwise

where w(n) = {
Suppose, x(n)=cosw,n then

X() = % W - o,) + Wo + o)
where, W(w) is Fourier transform of the window.
Rectangular window function causes (see figure 8) false ripple or leakage in a spectral estimate.

In order to this effect it is beneficial to use window functions whose Fourier transforms have
lower sidelobes.

For this purpose, we may choose Hann window which has a 1% sidelobe -32dB relative to the
main lobe where as rectangular window has only -13dB relative distance.(See following figure)

Effect of windowing(Hann window)

Magnitude

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (cycles per sample))

Figure 9: Hann windowed spectrum
Note : Obviously Hann windowing does not give you the true weight of spectral components, it

just suppresses false spectral peaks as a result of rectangular windowing. So purpose of
windowing here is to get idea of spectral content only.
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Exercise 4 (4.1 — 4.3):
1. 64 samples 125us apart are available for x(t) = sin (2:fit) + 0.05sin (2 afyt), where f; and f, are
1062.5 Hz and 1625 Hz respectively.
a) Plot the data sequence and magnitude spectrum.(use stem() )
b) Perform windowing (Hann) and again plot the data sequence and magnitude spectrum
Comment on your result.

2. “Windowing not only distorts the spectral estimate due to the leakage effects, it also reduces
spectral resolution.” ---Justify this claim by explanation and simulated example.[See Proakis]

3. “Ability to resolve closely spaced spectral lines of different frequencies in limited by the
window main lobe width” --- Justify this statement by proper explanation and results of the

following problem.

Let, x(n) = cos w,nm + cos wn + cos wyn where w,= 0.2, w;=0.221 and w, = 0.6
Consider, window lengths L =25,50,100. Comment on your result.

5. Modulation Theorem :

If x(n)«2X > X (w)then x(n) cos w,n <> %[X(a) + w,) + X0 - )]

Consider the following example for DSB-SC modulation of an almost band limited signal, m(?).

t

<1,

0, otherwise
where, t, = 0.1s . Let, carrier, ¢(tf) = cos(2#f,t) where f; =250 Hz. Let, f; = 1250 Hz.

m () = {sin c(1007),

%figure 10 N=1024;% FFT bin size ,after zero padding
to=.1; M=fft(m,1024);

ts=.001; M=M/fs;%scaling

fc=250; U=fft(u,1024);

fs=1/ts; U=U/fs;%scaling

t=[-to:ts:to]; fn = [0:1/N:1-1/N]*fs-fs/2;

m=sinc(100*t); subplot(211),plot(fn,abs(fftshift(M)))
c=cos(2*pi*fc*t); subplot(212),plot(fn,abs(fftshift(U)))

u=m.*c;% DSB -AM modulated Signal
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Spectra of Message Signal

EEE 312

|:|I:|15 T T T T T T T
0.01 ¢ .
0.005 - .
I:I 1 1 1 1 1 1 1
-600 -400 -200 o 200 400 500
w107 Spectra of Modulated Signal
E T T T T T T T
LS -
2F fc=260 Hz
ok _ . . 4 ¥\ .
-600 -400 -200 o 200 400 500

Frequency (Hz)

Figure 10: Spectra of message signal is shifted to the carrier frequency and magnitude is halved.

Exercise 5.1:

What happens if the duration of the message signal t, changes; in particular; what is the effect
of having large t,’s and small t,’s? What is the effect on the bandwidth? (for the example

given, Figure 10)

Now consider the demodulation of the DSB-SC AM signal.

x(n)cos® w,n <> %X(a)) +i[X(a) +2m,)+ X (0 -2w,)]

Then after proper low-pass filtering we get the following result.(Figure 11(b))
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w107 Spectra after multiplication with the carrier 2 times
E T T T T T T T
- o
4L i
2F -
I:I 1 1 1 J 1 L 1 1 1
-500 -400 -200 a 200 400 500
apectra of demodulated signal
I:II:I1 5 T T T T T T T
(b)
0.0 r .
0.005 .
I:I L L ! | ! L L
-500 -400 -200 a 200 400 500
Frequency (Hz)
Figure 11: Spectra for demodulation
% figure 11 ncut=floor(fcut*fs/N);
y=u.*c; H=zeros(1,N);
Y=fft(y,1024); H(1:ncut)=2*ones(1,ncut);
Y=Y/fs; H(N-ncut+1:N)=2*ones(1,ncut);
figure(2) Uprime=Y."H;
subplot(211),plot(fn,abs(fftshift(Y))) subplot(212),plot(fn,abs(fftshift(Uprime)))
fcut=200;

Exercise 5.2:

Consider the following FDM system.

t

t

sinc(1002), t| <t sinc”(1002), |t <1z,
ny (t) = ’ m, (t) =

0, otherwise 0, otherwise
where, t, = 0.1s . Let, carrier, ¢, (¢) = cos(27f, t) where fo;= 250 Hz. Let, f; = 2000 Hz.
and carrier, ¢, () = cos(27f, 1) where f.; = 750 Hz. Obtain magnitude spectra at different stages

of the system.
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Figure 11: Simple FDM system

¥ 1|:|':3 spectra of FOM signal
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=
|:| L 1 1 .l.l 1 n " 1 1 1
-1000 -300  -600 400 -200 o 200 400  BOO 800 1000
Frequency(Hz)

Figure 12: Spectra of FDM signal.

Appendix :
Generating arbitrary bandlimited input sequence for test purpose:

M-function fir2() can be used to generate a causal finite-length sequence with a bandlimited
frequency response. For example, we want a sequence with the following spectrum.

fir2()

e b = fir2(nfm) returns row vector b containing the n+1 coefficients of an order n FIR
filter. The frequency-magnitude characteristics of this filter match those given by vectors
fand m:

e fis a vector of frequency points in the range from O to 1, where 1 corresponds to the
Nyquist frequency. The first point of f must be 0 and the last point 1. The frequency
points must be in increasing order.

e m is a vector containing the desired magnitude response at the points specified in f.

fand m must be the same length.
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0]
L L
- /3 2n/3
Figure 13: Arbitrary bandlimited magnitude spectra.
>=> w=[0 pi/3 2*pi/3 pi];% digital angular frequency
>=> freq=w/pi; % Normalized angular frequency
>> x=fir2(99,freq,mag); % Generating 100 point sequence
>=> [X,w]=freqz(x,1,512); % DTFT
>= plot(w/pi,abs(X),'k’,'Linewidth’,2)
1.5
1 |
X]
0.5F B
O | | | | | L I I .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized angular frequency
0.6
0.4} .
Amplitude
0.2 |
0 ee-euue-eeuum-emd)é(f Téd)meemuuee-euue-e
_02 1 1 1 1 1 1 1
30 35 40 45 50 55 60 65 70
Time index,n

Figure 14: Magnitude spectra upto 7 (Nyquist frequency). and time sequence for 30:70

shown.
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FAQs :
1. How can we be certain that most of the frequency contents of x(t) are in the DFT?

Ans : To get X(k) from x(t), we need first to sample x(t) making sure that f; , the sampling
frequency used to produce x(n), is at least twice f;, , the maximum frequency in x(t). This is
necessary to avoid aliasing. Next, N samples should be collected from x(t) in NT; sec, where T,=
211f; . The number of samples N is inversely related to the frequency resolution, Af according to

Ss
AN = — Hz
/ N
The smaller the frequency resolution is, the better is the process of detecting most of the

frequency components in x(t).
2. Is the Circular Convolution the same as the Linear Convolution ?

Ans: The circular convolution of two signals x;(n) and x(n) will be the same as the linear
convolution if we append zeros to the end of x;(n) and x,(n) so that the number of samples in
x1(n) and x,(n) will be Ny + N, — 1 where N, is the number of samples in x;(n) and N is the
number of samples in x,(n).

3.Is [X(w) = |X(K)| ?

Ans: Due to the inherent factor 1/T; in calculating the Fourier transform of discrete signals(due to
sampling), the magnitude of the DFT, |X(k)| should be multiplied by T; to get the approximation
to |[X(w)|, continuous time Fourier transform .

4. Convolution can be performed in time domain or can be obtained by DFT-IDFT
relations. Which is faster?

Ans: Create two signals x1 and x2 that each have 5,000 random elements and compare the length
of time it takes to circularly convolve the two functions by matrix relation(time domain approach)
and the DFT method given.

%by conv %by DFT

tic

x1=rand(1,5000); tic

x2=rand(1,5000); y=ifft( fft(x1) .* fft(x2) );
y=gallery('circul',x2)'*x1'; toc

toc

Tic saves the system clock into a hidden global variable and toc reads that variable, compares it
with the current time, and displays the difference. Record how long it takes with each method,
and be prepared to be surprised.

Sample Result:

Elapsed time is 833.422000 seconds.(by conv)
Elapsed time is 1.516000 seconds.(by DFT)
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Insightful Exercises:

1. What do you know about the nature of PSD of a white noise sequence? Flat !! .Lets
check it out. First, obtain a 1000 point random white noise sequence, w(n), obtain Ry
(autocorrelation) and then perform DTFT. It is better to plot PSD curve in
10log(PSD). Vs ® format. Comment on your result.

2. Present a technique to obtain N-point DFTs of two real sequences using a single N-
point DFT .

Say, x(n) ={1,2,0, 1} and y(n) = {2, 2, 1, 1}
Obtain X(k) and Y (k) by using 4-point DFT only once.

3. Observe the output spectrum of an up-sampler. Consider the bandlimited input
sequence used in Appendix. If L is the upsampling factor then

>> y=zeros(1,L*length(x));
>>y(1:L:length(y))=x; % up-sampled sequence

Explain your answer on mathematical basis.[Hint : Find z-transform expression of
upsampler output. Take help from Experiment 2 —Exercise 1.3]

Reference :

1) Proakis & Manolakis,”Digital Signal Processing:Principles,Algorithms and Applications.” ,Prentice Hall
Ltd.

2) Mitra,” Digital Signal Processing: A Computer Based Approach” , Edition 1998, Tata McGraw
-Hill Co. Ltd.

3) Denbigh, ”System Analysis and Signal Processing” , Edition 1998, Addison-Wesley.

4) Elali, “Discrete Systems and Digital Signal Processing with MATLAB®™” |Edition 2004, CRC Press

5) Ingle & Proakis, “Digital Signal Processing using MATLAB® « Edition 2000 Thomson-Brooks/Cole Co .

6) Salehi & Proakis, “Contemporary Communication Systems using MA TLAB"”, Thomson-Brooks/Cole Co

This laboratory manual is prepared by

Toufiqul Islam
and supervised by

Prof. Md. Kamrul Hasan July 28, 2007
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BUET

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING,
DHAKA-1000, BANGLADESH.

COURSE NO.: EEE 312
Experiment No. — 5

FIR Filter Design

Objective: This lab introduces the concepts of digital filters and covers the systematic methods
of finite impulse response (FIR) filter design. The standard filter design techniques used in this
experiment include Filter Design using Standard Windows and Parks-McClellan algorithm.
When the students will complete the lab, they will able to design FIR filters to meet the
specifications and compare different filter design techniques.

Introduction:

In digital signal processing applications, it is often necessary to change the relative amplitudes of
frequency components or remove undesired frequencies of a signal. This process is called
filtering.

A linear and time-invariant causal digital filter with input x(n) and output y(n) may be specified
by its difference equation

Y= 2 bx(n=i)= Y a,y(n=k) (1)

where b; and ay are coefficients which parameterize the filter. This filter is said to have N zeros
and M poles. Each new value of the output signal, y(n), is determined by past values of the
output, and by present and past values of the input. The impulse response, h(n), is the response of
the filter to an input of 6 (n), and is therefore the solution to the recursive difference equation

h(n) ngié(n—i)—iakh(n—k) (2)
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There are two general classes of digital filters: infinite impulse response (IIR) and finite impulse
response (FIR). The FIR case occurs when ak= 0, for all k. Such a filter is said to have no poles,
only zeros. In this case, the difference equation (2) becomes

h(n) = fbia(n i) 3)

Since (3) is no longer recursive, the impulse response has finite duration N. In the case
where a, # 0, the difference equation usually represents an IIR filter. In this case, (2) will usually

generate an impulse response which has non-zero values as n — oo.

By taking Z-transforms of both sides of equation (1), we obtain

_Y(z) _ N_lbiz_i

i=0

H(z)= -
® X(2) 1+Zilakz_k

(4)

From this formula, we see that any filter which can be represented by a linear difference equation
with constant coefficients has a rational transfer function (i.e. a transfer function which is a ratio
of polynomials). There are many different methods for implementing a general recursive
difference equation of the form (1). Depending on the application, some methods may be more
robust to quantization error, require fewer multiplies or adds, or require less memory. Fig. 1
shows a system diagram known as the direct form implementation; it works for any discrete-time
filter described by difference equation (1). Note that the boxes containing the symbol z’
represent unit delays, while a parameter written next to a signal path represents multiplication by
that parameter.

x(n) . - . Vin)

25 T, 12
1 “1
L
-1 . -1
z b., ' & d . z
L ] L ]
. .
L ] L ]
-1 -1
Z z
by Apg

Fig. 1: Direct form implementation for a discrete-time filter described by a general difference
equation of the form (1).
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Filter design techniques:

1. Filter Design Using Truncation

Ideally, a low-pass filter with cutoff frequency @, should have a frequency response of

. Liolfw,
H,(e™)=
O,0.<|w|<r

and a corresponding impulse response of

1 7 o 7 :
h,(n) =2 J. H,(e’)e’"dw = a7); s1nc(a)7;n}—oo<n < 0

However, no real filter can have this frequency response because /4(n) is both noncausal and
infinite in duration.

One method for creating a realizable approximation to an ideal filter is to truncate this impulse
response outside of ne[-M,M].

h(n)=< 7

0, otherwise

In order to visualize the effect of truncation, we express the truncated impulse response as

h(n) = hy(m)w(n)

where, w(n) is a finite duration rectangular window defined as
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L, |n|<M

w(n) =
() 0, otherwise

Since the multiplication by the window function in time domain corresponds to a convolution in
the DTFT domain, we can easily visualize the spectrum of the designed FIR filter as shown
below:

Hyle/®) !

Hie/®)

Transition

L e “" bandwidth

Ripples

Wi{elv) @ \
L-.__-‘\

. —
Circular —r —w, 0 } e T

Max side-lobe

heilght convolution Minimum
N i . stopband
— e N attenuation
T Main lobe

width

Fig. 2: The periodic convolution produces a smeared version of the ideal impulse response.

A truncated impulse response is of finite duration, yet the filter is still noncausal. In order to
make the FIR filter causal, it must be shifted to the right by M units. For a filter of size N = 2M +
1 this shifted and truncated filter is given by

We oo L N—=17 T 1
. Yesine (—‘f n— —3) n=0,1,..., N -1
h (n) = { f’..rr ™ [ 2 I o ’
' oLnerwlse
)
This time shift of (N — 1)/2 units to the right corresponds to multiplying the frequency response
by e7”™D2 1t does not affect the magnitude response of the filter, but adds a factor of —jw(N —

1)/2 to the phase response. Such a filter is called linear phase because the phase is a linear
function of w.

It is interesting to see that the filter formula of (5) is valid for N both even and odd. While both
of these filters are linear phase, they have different characteristics in the time domain. When N is
odd, then the value at n = (N —1)/2 is sampled at the peak of the sinc function, but when N is
even, then the two values at n = N/2 and n = (N/2) — 1 straddle the peak.
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Filter Design Using Standard Windows

We may generalize the idea of truncation by using different windowing functions to truncate an
ideal filter’s impulse response. More desirable frequency characteristics can be obtained by
making a better selection for the window, w(n). In fact, a variety of raised cosine windows are

widely used for this purpose. Some popular windows are listed below.

1. The rectangular window

I, 0<ns<M-1
w(n) =
0, otherwise
2. Bartlett window
2n M -1
, 0<n<
M -1 2
w(n) = 5 2n ’ M_ISnSM—l
M -1 2
0, otherwise

3. Hanning window

0.5{1—003( 2zn ﬂ 0<n<M -1
M

0, otherwise

4. Hamming window

0.54—0.46c0s| 2|, 0<n<M-1
w(n) = M -1
0, otherwise

5. Blackman window

0.42—0.5c0s| 2" |+ 0.08c0s| ). 0<n<m -1
M—1 M—1

w(n) =
0, otherwise
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6. Kaiser window

w(n)

where, /,[.] is the modified zero-order Bessel function, and £ controls the shape of the window.
Large values of S reduce the window sidelobes and therefore result in reduced passband and

stopband ripple.

In filter design using different truncation windows, there are two key frequency domain effects
that are important to the design: the transition band roll-off, and the passband and stopband
ripple (see Fig. 2). There are two corresponding parameters in the spectrum of each type of

window that influence these filter parameters.

= The filter’s roll-off is related to the width of center lobe of the window’s magnitude

spectrum.

» The ripple is influenced by the ratio of the mainlobe amplitude to the first sidelobe

amplitude (or difference if using a dB scale).

These two window spectrum parameters are not independent, and one can easily find a trend by

examining the spectra for different windows.

The theoretical values for the mainlobe width and the peak-to-sidelobe amplitude are shown in

otherwise

EEE 312

Table 1.
Table 1
Window name Main lobe width Peak-to-side lobe
amplitude (dB)

Rectangular 4r -13dB

M
Bartlett 8_7[ -27 dB

M
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Hanning 8 -32dB

Hamming 87 -43 dB

Blackman 127 -58 dB
M

Filter Design Using the Kaiser Window

The Kaiser window function of length M is defined as

W]

s <n<s<M-1
1,[A] "

0, otherwise

w(n) =

= The Kaiser filter must be designed to meet the smaller of the two ripple constraints:
§=min{s,.5,}
= The values of # and M could be chosen to meet any set of design parameters,
(0,0,,0,), by defining A =-2010gl05 and using the following two equations:

0.1102(A — 8.7) A =50
F=1{ 0.5842(A —21)%4 + 0.07886{A —21) 21 < A < 50
0.0 A<21

M=|1+ A8
2.285(w, - w,)

where, [.] is the ceiling function, i.e. [x] is the smallest integer which is greater than or equal to
X.

Filter Design Using Parks-McClellan Algorithm
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Kaiser windows are versatile since they allow the design of arbitrary filters which meet specific
design constraints. However, filters designed with Kaiser windows still have a number of
disadvantages. For example,
= Kaiser filters are not guaranteed to be the minimum length filter which meets the
design constraints.
= Kaiser filters do not allow passband and stopband ripple to be varied independently.

In 1972, Parks and McClellan devised a methodology for designing symmetric filters that
minimize filter length for a particular set of design constraints {w,, ws,d,, and o, }. The
resulting filters minimize the maximum error between the desired frequency response and the
actual frequency response by spreading the approximation error uniformly over each band. The
Parks and McClellan algorithm makes use of the Remez exchange algorithm and Chebyshev
approximation theory. Such filters that exhibit equiripple behavior in both the passband and the

stopband, and are sometimes called equiripple filters.

Designing a filter with the Parks and McClellan algorithm is a two step process. First the length
(i.e. order) of the filter must be computed based on the design constraints. Then the optimal filter
for a specified length can be determined. As with Kaiser windows, the filter length computation
is approximate so the resulting filter may exceed or violate the design constraints. This is
generally not a problem since the filter can be redesigned for different lengths until the
constraints are just met. The Matlab command for computing the approximate filter length is
[n, fo, mo, w] = remezord (f, m, ripple, 2*pi)
where the inputs are:

f - vector containing an even number of band edge frequencies. For a simple low pass filter, f =
[wp ws], where wp and ws are the passband and stopband frequencies, respectively.

m - vector containing the ideal filter magnitudes of the filter in each band. For a simple low pass
filter m = [1 0].

ripple - vector containing the allowed ripple in each band. For a simple low pass filter ripple =
[delta p delta s], where delta p and delta_s are the passband and stopband ripples, respectively.

2*pi - value, in radians, that corresponds to the sampling frequency.

The outputs of the command are n = filter length - 1, and the vectors fo, mo, and w which are
intermediate filter parameters.

Once the filter length, n, is obtained, the Matlab command for designing a Parks-McClellan filter
is b = remez (n, fo, mo, w). The inputs n, fo, mo, and w are the corresponding outputs of
remezord, and the output b is a vector of FIR filter coefficients such that

H{z)=5b(1)+ fn::_?j.:_l + -+ bn+1)"
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Labwork

1. Plot the rectangular, Bartlett, Hanning, Hamming, and Blackman window functions of
length 21 on a single figure using the subplot command. Then compute and plot the DFT
magnitude of each of the five windows. Plot the magnitudes on a decibel scale (i.e., plot
20 log10 [W(e"))).

Hint: Use at least 512 sample points in computing the DFT.

Measure the null-to-null main lobe width (in rad/sample) and the peak-to-side lobe
amplitude (in dB) from the logarithmic magnitude response plot for each window type.
The Matlab command zoom is helpful for this. Make a table with these values and the
theoretical ones.

2. Plot the Kaiser windows and their DFT magnitudes (in dB) for M = 21 and the following
values of S

B =0,1,5.

3. Write a Matlab program that computes the truncated and shifted impulse response of size
N for a low pass filter with a cutoff frequency of w. = 2.0. For each of the following
filter sizes, plot the magnitude of the filter’s DFT in decibels:

= N=2I
= N=101

Report:
(a) Submit the plots of the magnitude response for the two filters (not in decibels).
On each of the plots, mark the passband, the transition band and the stopband.
(b) Submit the plots of the magnitude response in decibels for the two filters.

(c) Explain how the filter size effects the stopband ripple. Why does it have this
effect?

4. Design a low pass filter, h(n) using Kaiser window with the following design
specifications:

f_
o
|
bO

0
2

4, = 0.05
d, = 0.005

Plot the magnitude of the DFT of h(n) for |w| < 7 . Create three plots in the same figure: one that
shows the entire frequency response, and ones that zoom in on the passband and stopband ripple,

e}
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respectively. Mark &,,6,,®,,®,on this plot where appropriate. (Do not use a decibel scale on
this set of plots.)

Report:
(a) Submit the values of £ and M that you computed.
(b) Submit the plot of the filter’s magnitude response. Make sure the plot is
labeled.
(c) Submit the values of the passband and stopband ripple. Does this filter meet
the design specifications?

5. Now design a symmetric FIR filter using remezord and remez in Matlab to meet the
design specifications given in step 2.

Compute the DFT of the filter’s response for at least 512 points, and use this result to
compute the passband and stopband ripple of the filter that was designed.

Adjust the filter length until the minimum order which meets the design constraints is
found. Plot the magnitude of the DFT in dB of the final filter design.

Report:

(a) Submit the final measured values of filter length, passband ripple, and
stopband ripple. How accurate was the filter order computation using
Matlab’s remezord? How does the length of this filter compare to the filter
designed using a Kaiser window?

(b) Submit the plot of the filter’s DFT. How does the frequency response of the
Parks-McClellan filter compare to the filter designed using the Kaiser
window? Comment on the shape of both the passband and stopband.

This laboratory manual is prepared by

Mohammad Ariful Haque
and supervised by

Prof. Md. Kamrul Hasan August 28, 2007
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