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Experiment No. 1 

 
Study of Sampling, Quantization and Encoding 

 
Most signals of practical interest, such as speech, biological signals, communication 
signals etc. are analog. These signals must be processed for different purposes. Digital 
signal processing of an analog signal is preferable to processing the signals directly in the 
analog domain because of its flexibility in reconfiguration, better accuracy in control, 
better storing capability and cost effectiveness. That’s why the analog signals are to be 
converted into corresponding digital domain for the purpose of processing. The analog 
signals are converted into digital signals through sampling, quantization and encoding. 
 
 
PRELAB WORK:  
 

 Read this laboratory tutorial carefully before coming to the 
laboratory class, so that you know what is required. 

 Try to follow the lecture notes of EEE 311. 
 Familiarize yourself with relevant MATLAB functions and codes necessary for 

this experiment. 
 Do not bring any prepared MATLAB code in the lab with any 

portable device. 
 
THEORY: 
 

Quantized  
    signal 

Sampler Quantizer Coder xa(t) x(n) xq(n) 
Analog signal Digital signal 
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Analog to digital conversion process 

Sampling: 
 
In this section, a continuous time signal is converted into a discrete time signal by taking 
samples at discrete time instants. 
 

 

Ideal Sampler 

)(nTxa  Discrete time 
sampled signal 

)(tx  Analog  
signal 

 
Sampling Process 

 
The analog signal is sampled once every T seconds, resulting in a sampled data sequence. 
The sampler is assumed to be ideal in that the value of the signal at an instant (an 
infinitely small time) is taken. The most important parameter in the sampling process is 
the sampling period T, or the sampling frequency or sampling rate ,  which is defined as sf

T
f s

1
= . Sampling frequency is given in units of ‘samples per second’ or ‘hertz’.  

 
 
 

t 

 
 
 
 
 
 
 
 
 
 
 
 

A sinusoidal Signal  
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t 

Sampling operation is being performed  
 

Sampled version of the sinusoidal signal 

t 

 
 
 
 
 
 
 
 
 
 
 
          
 
If the sampling is too frequent, then the DSP processor will have to process a large 
amount of data in a much shorter time frame. If the sampling is too sparse, then important 
information might be missing in the sampled signal. The choice is governed by sampling 
theorem.  
 
Sampling Theorem: 
 
The sampling theorem specifies the minimum-sampling rate at which a continuous-time 
signal needs to be uniformly sampled so that the original signal can be completely 
recovered or reconstructed by these samples alone. The reconstruction of a sampled 
signal is done by simple low pass filtering. For successful reconstruction of the sampled 
signal, the sampling frequency must be equal to or greater than the twice time of the 
highest frequency component of the original signal. Otherwise the signal cannot be 
successfully recovered.  
 
If a continuous time signal contains no frequency components higher than W Hz, then it 
can be completely determined by uniform samples taken at a rate samples  per second  sf
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                              where                 , Wf s 2≥

or, in terms of sampling period,              
W

T
2
1

≤  .  

 
In MATLAB, the signals obtained before and after sampling look like – 
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Quantization: 
 
In this section, a discrete time continuous-valued signal is converted into a discrete-time 
discrete-valued (digital) signal. The value of each signal sample is represented by a value 
selected from a finite set of possible values. The quantizer assigns each sample of  to 
the nearest quantization level by either rounding or truncation. 

)(nx

 
Quantization by rounding:

                         
 
In the case of rounding, the step size is divided into upper and lower halves. The value in 
the upper half are stepped into the next level and the value in the lower half remains in 
that level. 
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Quantization  
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by rounding 
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Quantized signal 
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Quantization by truncation: 
 

3 
∆ 

2 

1 Quantization  
process is being done 
by truncation 

t 0 

-1 

-2 

-3 
 

 
In the case of truncation, the extended value for a particular level is cut down and the 
sampled point stays at that particular level. 
 
                                   

               

3 
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 Quantized signal 
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In MATLAB, the sampled signals obtained before and after quantized sampling look like 
- 

-2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

10

1

 
 

-2 0 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

©Dept. of EEE, BUET  
 
 
 
 
 
 
 
 

Q
u 
a 
n 
t 
i 
z 
a 
t 
i 
o 
Sampled Signal with 100Hz sampling frequency 
 
 
n

Quantized Signal with 8 quantization level 
4 6 8 10

 

8



DSP Lab                                                                                                                   EEE 312  

Performing the quantization operation on , the quantized output  is obtained. 
The difference between unquantized sample  and quantized output is called 
quantization error, . The finite set of possible values are called quantization levels. 
The distance ∆, between two successive quantization levels is called the quantization step 
size or resolution. 

)(nx )(nxq

)(nx )(nxq

)(neq

 
The quantization error  in rounding is limited to  )(neq

 

2
∆−   to  2

∆  , 

 
i.e.   2)(2

∆≤≤∆− neq  

 
If  and  represent the minimum and maximum value of  and L is the 
number of the quantization levels, then 

minx maxx )(nx

 

1
minmax

−
−

=∆
L

xx
 

 
If  and , and if b is the number of bits then  Vx +=max Vx −=min

12
2

−
=∆ b

V  

 
The quantization error is then given by –  

 
)()()( nxnxne Q −=  

 
The mean-square value of the error is given by –  

 

∫
∆

∆−

∆
=

∆
= 2

2

2
22

12
)()(1 ndeneeσ  

 
The performance of the A/D converter is characterized by SQNR, defined as 

 

2

2

e

xSQNR
σ
σ

=    ------------------------------------ (A) 

 
2

10
2

1010 log10log10log10 exdB SQNRSQNR σσ −==  
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So, 2
2
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102

2
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⎠

⎞
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⎛
+= bx

dB V
SQNR

σ
 

 
For higher values of b like 8, 10 or 12, we can approximate, bb 212 ≅−  
 

b
V
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Thus for each bit added to the A/D converter, the SQNR is improved by approximately 6 
dB. For sine wave input with amplitude = 1 volt, 
 
 

bVSQNR xdB 6log10log1077.4 2
10

2
10 +−+= σ  

= 0 

 
                                   b676.1 +=             ------------------------------------ (B) 

where, b= Number of bits  
 
Coding: 
 
The coding process in an A/D converter assigns a unique binary number to each 
quantization level. If L is the number of levels, then L levels can be represented by b bits 
where r Lb =2  o Lb 2log= . 
 
 
 
LAB WORKS : 
 

 Familiarize yourself with the MATLAB commands that will be required for this 
lab. 

 You may require the following MATLAB built-in functions for this experiment –  
 
 

   sin(), interp1(), length(), max(), min(), stem(), plot(),find(), ones(), ceil(), dec2bin() 
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Part – A 
 
Sampling of an analog signal and reconstruction of the sampled signal. 

 
 
1. Generate a signal,   ( ) )0102sin( 0+= ttx π
 
2. Take the samples of this signal at a sampling rate of 20 Hz. 
 
3. Reconstruct the analog signal by interpolation. [Use interp1() function] 
 
4. Repeat steps 2 and 3 at a sampling rate of 50 Hz, 100 Hz and 10 Hz. 
 
5. Generate another signal, )1002sin()502sin()102sin()( tttty πππ ++=  
 
6. For successful reconstruction of the signal, what should be its sampling frequency?  
    Verify it though the program. 
 
Comment on the obtained results in step – 4 and 6. Explain the results. 
 

 
Part – B 

 
Study of quantization and quantization error. 

 
1. Write a MATLAB source code that will realize the uniform quantizer .  

 
2. Take the signal of step – 5 in Part – A and sample it by 200 Hz sampling frequency. 

 
3. Quantize the signal by a 3 bit uniform quantizer. 

 
4. Obtain the quantization noise power. 

 
5. Obtain SQNR from equations (A) and (B) which are described in the theory part. 

 
6. Reconstruct the original signal by interpolation. [Use interp1() function] 

 
7. Repeat steps 3 to 6 for 4 and 6 bit uniform quantizer. 

 
 
Comment on the obtained results in step - 6. Explain the result. 
 

Part C 
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Encoding of the quantized sequence. 

 
In the next stage of quantization, the sampled data will be converted into binary data. For 
this, first you have to represent the quantization levels into decimal value and then have 
to convert it into binary data. 

 
• Obtain a sampled quantized data sequence. 
 
• Represent each level by a definite binary number. The number of digits 

, where L is the quantized level. Lb 2log=
 

Home tasks 
 

Theory: 
 
An important application of this experiment is in Pulse Code Modulation (PCM) system. 
PCM is a method for sampling and quantizing an analog signal for the purpose of 
transmitting or storing the signal in digital form. It is widely used for speech transmission 
in telephone communications and for telemetry systems that employ radio transmission. 
 
Speech signals have the characteristics that small signal amplitudes occur more 
frequently than large signal amplitudes. A uniform quantizer provides the same spacing 
between successive levels throughout the entire dynamic range of the signal. A better 
approach is to use a non uniform quantizer, which provides more closely spaced levels at 
the low signal amplitudes and more widely spaced levels at the large signal amplitudes. A 
non uniform quantizer characteristic is usually obtained by passing the signal through a 
non linear device that compresses the signal amplitudes, followed by a uniform quantizer.  
With the use of non – uniform quantizer prior to a uniform one, quantization noise is 
greatly reduced. 
 

Non – uniform quantizer are of two types –  
 

• U.S. and Canadian standard 
• European standard  

 

U.S. and Canadian telecommunication systems use µ - law compressor, which has the 
input – output characteristics of the form –  
 

1,1)sgn(
)1ln(
)1ln(

≤≤
+

+
= yss

s
y

µ
µ

 

where s is the normalized input, y is the normalized output, sgn(.) is the sign function and 
µ  is a parameter that is selected to give the desired compression characteristics. This 
system adopted µ =255 for encoding of speech waveforms.  
 
European telecommunication systems use A - law compressor, which has the input – 
output characteristics of the form –  
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⎪
⎪
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⎧
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+
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10),sgn(

ln1

11),sgn(
ln1

)ln(1

 

 
where A is chosen as 87.56. 
 
[See Chapter 10 of the 2nd reference] 
 
Simulate the following system with MATLAB –  
 

  µ - law 
compressor 

 Uniform  

 
Process the sinusoidal signal through the above sampler, µ law compressor and 
uniform quantizer. As a part of processing, you have to do the following -   
 
- Write MATLAB codes for each section 
- Show the waveshapes for each section 
- Compute the signal to quantization-noise ratio (of the quantized signal) with the 

given formulae(for signal in step 5 part A).  
 
References: 
 

1) Proakis & Manolakis, “Digital Signal Processing: Principles, Algorithms and 
Applications.”, Chapter 1, 3rd Edition , Prentice Hall Ltd. 

 
2) Ingle & Proakis, “ Digital Signal Processing using MATLAB ”, Edition 2000 

Thomson-Brooks/Cole Co Ltd. 
 

----------------------------------------------------------------------------------------------------------- 
 

The laboratory tutorial of this experiment is prepared by –  
 

Imtiaz Ahmed 
Lecturer, Dept. of EEE, BUET. 
 
Under the supervision of –  
 

Dr. Md. Kamrul Hasan 
Professor, Dept. of EEE, BUET. 
 
June 9, 2007 

   Generate a 
sinusoidal signal 

Sampler 
Quantizer 

Quantized   
   Signal 
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Experiment No. 2 

 
Time domain analysis of discrete time signals and systems 

 
% “The purpose of computing is insight, not numbers.” – R.W. Hamming 

 
In this experiment, mainly time domain  properties of  discrete  time  signals  and systems    
will be analyzed. First of all different discrete time sequence generation and synthesis 
will be performed. Then LTI system response in terms of convolution and difference 
equation will be observed. Last but not the least, correlation of two signals, its uses in 
different fields will be analyzed. 
 
Besides some MATLAB based practical pertinent examples will be presented too. 
Several related exercises and real-time applications are listed for proper comprehension 
of the theory.  
 
Pre-lab Work: 
 

1. Familiarize yourself with the experiment manual before attending the lab. 
2. Practice the examples and exercises listed in this experiment at home for better 

class performance. 
3. DO NOT bring any relevant MATLAB codes, neither in any portable device nor 

in written form.   
 
 
Important MATLAB functions used in this experiment: 
 
 
 
 

stem(), fliplr(), min(), max(), conv(), filter(), xcorr(), randn(), rand()   
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Part A 
 
Generating basic sequences: 
 
a) To implement unit impulse sequence  
 

0 0

0

( ) 1 ,
0,

n n n n
n n

δ − = =
≠

   over   1 0n n n2≤ ≤                                                                       (1) 

% Generate impulse sequence 
% Say, n1= -3 and n2=3 (7 point sequence). Consider lag, no = -1 
>>n1= -3; 
>>n2= 3; 
>>n=n1:n2; 
>>no= -1; 
>>x1=[(n-no) = = 0]; % using logical argument 
>>stem(n,x1); 
 
b) To implement unit step sequence 
 

0 0

0

( ) 1 ,
0,

u n n n n
n n

− = ≥
< 2   over   1 0n n n≤ ≤                 (2)  

 
just set  x2 = [(n-no)>=0] in the above program. 
Sample results are shown in Figure 1. 
 

 
Figure 1: x1(n) = δ(n+1) and x2(n) = u(n+1) 
 
Lab Exercise : A.1 
 
Generate a ramp sequence (shown in Figure 2) following the above program.(length and 
lag must be variable).  
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Figure 2: Result of Lab Exercise: A.1 
 
Lab Exercise: A.2 
 
Let n1 denotes the time index for x1(n) and n2 represent the time index for x2(n).Write a 
general program to find x(n)=x1(n)+x2(n).The index of x(n) will start with the minimum 
of n1 and n2 and end with the maximum of n1 and n2.  
 
 
Given, x1(n)={ 0 , 1 , 2 , 3}and x2(n)={0 , 1 , 2 , 3}. 
 
 
Lab Exercise : A.3 
 
The up-sampler is a discrete-time system defined by the input-output relation 
 

otherwise

LLn
L
nxny

,0.................

,...2,,0),()( ±±==                       (3) 

   L is called the up-sampling factor which is a positive integer 
greater than 1. L-1 equidistant zero samples are inserted by the up-sampler between two 
input samples. It finds applications in sampling rate alteration process. Say input is a sine 
wave with frequency 0.36 rad/sec and L = 3 . Take time index, n = 1 to 52. Observe the 
up-sampled signal up to 52 samples. (Result shown in Figure 3) 
 
Lab Exercise : A.4 
 
Find the even and odd parts of the ramp signal obtained from Exercise 1.1 
(Result shown in Figure 4) 
 
Some helpful m-file routines: 
 
function [y,n]=sigshift(x,m,n0) % For signal 
shifting 
n=m+n0;  
y=x; 
 
function [y,n]=sigfold(x,n) % For signal folding 
y=fliplr(x); 
n=-fliplr(n); 
 

function [y,n]=sigadd(x1,n1,x2,n2) % For adding 
%two signals 
n=min(n1(1),n2(1)):max(n1(end),n2(end)); 
y1=zeros(1,length(n)); 
y2=y1; 
y1(find((n>=n1(1))&(n<=n1(end))))=x1; 
y2(find((n>=n2(1))&(n<=n2(end))))=x2; 
y=y1+y2; 
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Figure 3 : Result of Lab Exercise : A.3 
 

    
Figure 4 : Result of Lab Exercise : A.4 
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Part B   
 
Response of LTI Systems to Arbitrary inputs: Convolution 
 
For a  relaxed LTI system, the response y(n) to a given input signal x(n) can be obtained 
if we know the system impulse response h(n) . Then response y(n) is given by the 
following relation 

∑
∞

−∞=

=−=
k

nhnxknhkxny )(*)()()()(                                                                    (4) 

which is known as the convolution sum.  
 
Example: 
 
Using conv() function , we can compute the convolution sum of two discrete time 
signals. But the outcome of conv() function does not reveal the timing information. So 
time index of the sum should be derived from the signals to be convolved. Recall that the 
lowest time index of the convolution sum is the sum of the lowest time indices of the two 
signals to be convolved. Same thing applies for highest time index of the sum. Let 
 
x1=[4 2 6 3 8 1 5]; x2=[3 8 6 9 6 7];  
 
 
>>x1=[4 2 6 3 8 1 5]; 
>>n1=[-2:4];% generating index 
>>x2=[3 8 6 9 6 7]; 
>>n2=[-4:1]; 
>>kmin=n1(1)+n2(1);% left edge of convolved result 
>>kmax=n1(end)+n2(end); % right edge of convolved result 
>>y=conv(x1,x2); 
>>k=kmin:kmax; % generating index of the result 
>>subplot(311),stem(n1,x1) 
>>subplot(312),stem(n2,x2) 
>>subplot(313),stem(k,y) 
 
 
Lab Exercise: B.1 
 
In the previous example, x1(n) , x2(n) and y(n) are all of different lengths and scale, and 
this is far from ideal (Figure 5). Write a general program to bring three plots into same 
horizontal scale.(Figure 6) 
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Figure 5 : With different horizontal scale 
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Figure 6 : With same horizontal scale 
 
m-file which returns both convolved result and index : 
 
function [y ny]=conv_m(x,nx,h,nh) 
nyb=nx(1)+nh(1); 
nye=nx(length(x))+nh(length(h)); 

ny=[nyb:nye]; 
y=conv(x,h) 
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Part C   
 
System Response from difference equations: 
 
An important subclass of LTI discrete time (DT) systems is characterized by a linear constant 
co-efficient difference equation of the form 
 

∑ ∑
= =

−=−
N

k

M

k
kk knxbknya

0 0

)()(               (5)  

 
where x(n) and y(n) are, respectively, the input and output of the system. (N≥M assumed). 
{ } and { } are the coefficients. We can modify the equation as   ka kb
 

∑ ∑
= =

−+−−=
N

k

M

k

kk knx
a
b

kny
a
a

ny
1 0 00

)()()(  . Taking a0 inside ak and bk,we get 

∑ ∑
= =

−+−−=
N

k

M

k
kk knxbknyany

1 0

)()()(             (6) 

 
Based on the above equation, a causal LTI system can be simulated in MATLAB using 
filter() function. Its general form is 
 
y = filter(b,a,x); % remember co-efficient a0 must be non-zero. 
If a0 is not equal to 1, filter() normalizes the system coefficients by a0 
 
Lab Exercise: C.1 
 
Consider a system described by the following equation 
 
y(n) + 0.6y(n-1)= x(n) 
 
Use MATLAB to find impulse response, step response and sinusoidal response for 
x(n)=0.5sin(n)u(n) in the range -10≤n≤20. Verify the result using conv() function for step 
and sinusoidal responses. 
 
Lab Exercise C.2: 
 
Now consider 
 
y(n) + 0.6y(n-1)= x(n)+x(n-2) 
 
Obtain step response for this system applying superposition theorem. DO NOT use filter() 
function in that case. Verify your result using filter() function later on. 
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Figure 7 : Result of Exercise C.1 
 

Part D   
Correlation: 
 
The cross-correlation of two deterministic real discrete-time finite energy sequences x(n) and 
y(n) is a third sequence rxy(l) defined as 
 

∑
∞

−∞=

−=
n

xy lnynxlr )()()( .            (7) 

 
In dealing finite duration sequences where x(n)=y(n)=0 for n<0 and n>N-1 
 

∑
−−

=

−=
1

)()()(
kN

in
xy lnynxlr             (8) 

 
where i = l, k = 0 for l ≥ 0  and i = 0 ,k = l for l < 0(See Appendix for clarification) 
 
 
A distinct peak in the CCF indicates that the two signals are matched for that particular time 
shift. This has important applications in signal detection and system identification. 
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Example: 
 
Consider, 
 
y(n)=x(n-2) where x(n)=[3 11 7 0 -1 4 2]. Then cross-correlating x(n) with y(n) we get 
  
 
In the following figure, it is apparent by inspection that the CCF is very small if k=0 but 
substantial if k=2. This is because y(n) lags behind x(n) by 2 samples and a match therefore 
occurs at 2 samples delay. 
 
>>x = [3,11,7,0,-1,4,2]; 
>>n = -3:3; 
>>[y,ny] = sigshift(x,n,2) 
>>[x,nx] = sigfold(x,n); 
>>[rxy,nxy] = conv_m(x,nx,y,ny); 
>>stem(nxy,rxy/max(rxy)) 
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Figure 8 : Result of cross-correlation between x(n) and y(n) 
 
There is a connection between convolution and correlation. 

For convolution, we set   ∑
∞

−∞=

−=
n

nkynxnynx )()()(*)(

Then if we set,  we get the desired result for CCF.  ∑
∞

−∞=

−=−
n

knynxnynx )()()(*)(

)(*)()()()( nynxknynxkr
n

xy −=−= ∑
∞

−∞=

           (9)  
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So we can compute CCF by conv() function too. 
 
rxy = conv(x,fliplr(y));% Here fliplr() function folds y. 
 
If the signals are ergodic then CCF is defined as 
 

 ∑
−=

∞→
−

+
=

M

Mn
Mxy knynx

M
kr )()(

12
1lim)(ˆ           (10) 

 
For random signals we have to calculate rxy(k) as E[x(n)y(n-k)] to be exact. But to calculate 
an expected value accurately we need infinite data points. In practice data is finite so we take 
the estimated CCF as averaged result. 
 
For N point periodic signals a simpler alternative is  
 

∑
−

=

−=
1

0

)()(1)(ˆ
N

n
xy knynx

N
kr             (11)  

Similarly auto-correlation function can be defined. Just replace y(n) with x(n).   
 
Note: ACF of a periodic signal is periodic.  
 
Exercise: D.1 
 
a) Determine the ACF of a sine wave sin(wot) analytically.(Homework) 
 
b) Take period, T=2ms, tstep as T/100.  

1. Take t=tstep:tstep:T ; 
Find ACF for x=2*sin(2*pi*t/T). 

2. Repeat 1 for t=tstep:tstep:3*T 
 
Explain for (b.2) why ACF magnitude decreases for successive periods? What happens if we 
set t(end)=5T , 10T etc.? 
 
c) Observe the ACF of a random white noise sequence.  
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Applications of ACF/CCF: 
 
1. Detecting a periodic input corrupted by AWGN 
 
 
This is an example (See Figure 9-10) that illustrates the use of ACF to identify a hidden 
periodicity in an observed signal. This example will demonstrate how white noise gets 
suppressed in auto-correlation domain. For instance, you can observe the ACF of a white 
noise sequence which is characterized by an impulse (i.e noise power)  at zero lag and nearly 
zero at other locations. The more the data points you take, the more the result matches an 
impulse.    
 
 
%observe the result for different SNR(0,-5,-10 dB) 
>>T=2e-3; % period=2ms 
>>tstep=T/100; 
>>t=tstep:tstep:3*T; % taking time index upto 3 periods 
>>x=2*sin(2*pi*t/T); % Input 
>>Px=sum(x.^2)/length(x); % Input power 
>>SNR= -10; % in dB 
>>Py=Px/10^(SNR/10); 
>>n=sqrt(Py)*randn(1,length(t));% generate white noise 
>>y=x+n; % Corrupted input 
>>ACF_x=normalize(xcorr(x)); % Normalizing the peak to 1 
>>ACF_n=normalize(xcorr(n)); 
>>ACF_y=normalize(xcorr(y)); 
>>ACF_y(length(x))=.4*max(ACF_y); %You can enable this line for better 
%understanding. Scaling value should be decreased for lower SNR 
>>figure(1) 
>>subplot(211),plot(t,x) 
>>subplot(212),plot(t,n) 
>>figure(2) 
>>subplot(221),plot(tstep*(1:length(ACF_x)),ACF_x)% showing ACF w.r.t. time 
>>subplot(222),plot(tstep*(1:length(ACF_y)),ACF_y)% showing ACF w.r.t. time 
% hold on 
 
function R=normalize(x) 
R=x/max(x); 
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  Figure 9: (a) Input periodic wave (b) Input corrupted by AWGN for -5dB SNR 
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Figure 10: (a) ACF of input (b,c,d) ACF of noisy sequence.  
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Lab Exercise D.2 
 
Derive a technique to obtain the original periodic signal if you have ACF of the noisy 
sequence. Test your technique for the cases displayed above. If the signal has a phase shift, 
could you recover it from ACF? Explain. 
 
2. Estimation of impulse response: 
 
Output of a relaxed system is given by y(n)=h(n) * x(n). If we cross-correlate the output of 
the system with a noisy input with normal pdf , then the cross-correlation  
 

( ) ( ) ( ) [ ( ) ( )]* ( ) ( ) ( ) ( ) ( ) (yr rr )R k y n r n r n h n r n r n r n h n R k h n= ∗ − = ∗ − = ∗ − ∗ = ∗       (12) 
 
where r(n) is a white noise input, is the auto-correlation of the noise input. As the auto-
correlation of white noise sequence is like impulse sequence (In other words, the input noise 
has a much greater bandwidth than that of the system).we can write 

)(kRrr

 
yrR (k) ≈ h(n)                                                                                       (13) 

 
Therefore, we say that if we correlate the white noise input with the output of the system, we 
will have an approximation of the impulse response of the system (See Figure 11). 
 
Consider a system: 
 

)()1(6.0)( nxnyny =−+  
 
%estimating system impulse response using cross-correlation 
>>N=500; 
>>nr=0:499; 
>>ny=nr; 
>>r=randn(1,N); 
>>y=zeros(size(r)); 
>>for n=2:500 
     y(n)=r(n)-0.6*y(n-1); 
    end 
>>rr=fliplr(r); 
>>nrr=-fliplr(nr); 
>>Ryr=conv(y,rr); % Calculating correlation 
>>kmin=ny(1)+nrr(1); 
>>kmax=ny(length(ny))+nrr(length(nrr));  
>>k=kmin:kmax; % generating index 
>>subplot(211),stem(k,Ryr/Ryr(N)) 
>>title('Approximate Impulse Response'); 
>>num=[1 0]; 
>>den=[1 0.5]; 
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>>n=0:499; 
>>x=zeros(size(n)); 
>>x(1)=1; 
>>yy=filter(num,den,x); 
>>subplot(212),stem(n,yy) 
>>title('Actual Impulse Response') 
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Figure 11: Actual and Estimated Impulse Response. 
 
End of Experiment Exercises: 
 
 
1. Write a general program to compute CCF of two DT signals. Signals can have  
     different time scale. DO NOT use conv() or xcorr() function. Say two inputs are 
 
    x(n)={  ….0,1,1,3,5,7,2,0….} and y(n)={  ….0,5,5,5,3,3,1,1,0….} 
 
   You can take insight from (8).This problem is just for proper understanding about what  
    is happening inside conv() and xcorr() functions.  
 
 
 
 
 

©Dept of EEE  27 



Digital Signal Processing 1 Laboratory                                                        EEE 312
  

2. Detection of signals in noise by auto-correlation 
  
Consider a radar transmitting a short tone burst of EM energy(Figure 12-a) and a weak echo 
from a distant target(Figure 12-b).In the absence of noise weak echo can be amplified and 
there is no problem detecting it. If there is background of noise whose amplitude exceeds that 
of the echo, the echo will be masked and not detectable((Figure 12-c),echo+noise).As we 
know noise is suppressed in ACF domain, then write a general program to detect the echo 
using correlation (Figure 12-d). If the tone burst has a gradual increase in frequency, what 
will happen? Is it advantageous for detection? Explain with necessary simulated figures. 
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Figure 12:(a) Transmitted tone burst (b)Received weak echo(c)Received echo buried into 
background noise(d)CCF between (a) and (c) to locate a weak echo. It shows that after 500 
units delay an echo arrives (location of the peak).   
 
3. Detection of a transmitted sequence 
   
Let in the transmitter, to transmit zero (0) we send x0(n) for 0 ≤ n ≤ L-1 and to transmit  
one (1) we send x1(n) for  0 ≤ n ≤ L-1 where x1(n) = - x0(n). The signal received by the  
receiver  
                 y(n) = xi(n) + w(n)    i = 0,1 and 0 ≤ n ≤L-1                                               (14) 
   
w(n) is additive white noise. 
Present a technique to detect the sequence transmitted from y(n).Assume that  
particular receiver knows x0(n) and x1(n).Write a general MATLAB program for this  
purpose. 
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4. Signal smoothing by a moving average (MA) system: 
 
From (6) if we set {ak}=0 for k = 1,…,N then (6) turns into 
 

∑
=

−=
M

k
k knxbny

0

)()(               (15) 

which is a non-recursive linear time-invariant system. This system takes most recent M+1 
points and add them after weighting. This type of system is called moving average (MA) 
system.  
 
Simple working MA system can be expressed as 
 

∑
−

=

−=
1

0

)(1)(
M

k

knx
M

ny .             (16)  

 
Such a system is often used in smoothing random variations in data.  

 
Figure 13: Signal smoothing by MA system 
 
Consider, x(n) = 2n(0.9)n . Take 50 point signal. 
Noise, d = rand(1,50)-0.5; % to make noise bipolar  
Take M=3.Write a sample program for the whole system shown (See Figure 14). Plot the M 
versus normalized error curve.  
 

Normalized error, 
)(

)()(
)(

nx
nznx

ne
−

=   

 
 
 
 

x(n) 

d(n) 

y(n)
z(n) MA system
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Figure 14: (left) x(n)=original sequence and y(n)=x(n)+d(n),corrupted sequence. (right)  
|                  z(n) ,output of the MA system and x(n)  
 
 
Appendix : 
 

 
                                                                     (a) 
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                                                                       (b) 
 
Figure 15: (a , b)illustrates cross-correlation of two finite N point sequences (equation 8). 
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BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY 
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, 

DHAKA-1000,  BANGLADESH. 
 

COURSE NO.: EEE 312 
 

Experiment No.  - 3 
 

Z-transform and Its Application 
 
 
The Z-transform plays the same role in the analysis of discrete time signals and LTI systems 
as the Laplace transform does in the analysis of continuous-time signals and LTI systems. 
The use of z-transform techniques permits simple algebraic manipulations. The Z-transform 
has become an important tool in the analysis and design of digital filters. In this experiment, 
different features of Z-transform have been discussed through various examples and pre-lab 
work exercises. At the end of this experiment, one will be able to perform Z transformation, 
inverse Z transform, system analysis through stability and causality. 
 
Pre Lab Concerns:  
 

 Read this lab description carefully before coming to the laboratory class, 
so that you will know what is required. 

 Try to follow the lecture notes of EEE 311. 
 Try to practice the Pre Lab exercises before coming to class. 
 The problems that will be given in the class may differ from the given ones 

but they will certainly cover the syllabus. 
 You will be able to solve the problems in lab if you do practice before coming to 

class.   
 Do not bring any prepared MATLAB code in the lab with any portable 

device. 
 

Used Functions: 
 
    ztrans(), iztrans(), conv(), residuez(), impz(), filter(), zplane(),zp2sos(),tf2zp()  

 
& 

SPTOOL 
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Part – A 
 
Z - transform 
 
The Z-transform of a discrete time signal  is –  )(nx

∑
∞=

−∞=

−=
n

n

nznxzX )()(  

where, z is a complex variable. Since z-transform is an infinite series, it exists only for those 
values of z for which this series converges. The region of convergence (ROC) of X(z) is the 
set of all values of z for which X(z) attains a finite value. 
 
Example:  
 
x(n) is a finite duration signal like  -  
 
  .  { }1,0,7,5,2,1)( =nx
 
Its z transformed signal, , its ROC is entire Z-plane 
except z=0. 

5321 7521)( −−−− ++++= zzzzzX

 
For , its z transformed signal is , here its 
ROC is entire Z-plane except z=0 and z=

{ 1,0,7,5,2,1)( =nx } 312 752)( −− ++++= zzzzzX
∞ . 

 
Z transform of different functions: 
 

Sequence                        Transform                            ROC
 
 δ[n]                                   1                                  all z 
 u[n]                                    z/(z-1)                                      |z|>1 
 -u[-n-1]                              z/(z-1)                                                             |z|<1 
 δ [n-m]                                 z-m                                     all z except 0 if m>0 or if m<0 
 anu[n]                                  z/(z-a)                                                   |z|>|a| 
 -anu[-n-1]                            z/(z-a)                                                   |z|<|a| 
 nanu[n]                               az/(z-a)2                                                 |z|>|a| 
 -nanu[-n-1]                         az/(z-a)2                                                 |z|<|a| 
 [cosω0n]u[n]                 (z2-[cosω0]z)/(z2-[2cosω0]z+1)       |z|>1 
 [sinω0n]u[n]                     [sinω0]z)/(z2-[2cosω0]z+1)                      |z|>1 
 [rncosω0n]u[n]             (z2-[rcosω0]z)/(z2-[2rcosω0]z+r2)             |z|>r 
 [rnsinω0n]u[n]                  [rsinω0]z)/(z2-[2rcosω0]z+r2)                  |z|>r 
 anu[n] - anu[n-N]              (zN-aN)/zN-1(z-a)                                        |z|>0 

 
 
MATLAB representation: 
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For representing a signal like this  in MATLAB, we just 
have to put the coefficients of the polynomial like -  

5321 7521)( −−−− ++++= zzzzzX

x=[1,2,5,7,0,1]; 
For converting the time domain signal into equivalent Z domain ztrans() function can be 
used which is part of the symbolic toolbox.  It evaluates signals of the form x[n]u[n], i.e. for 
non-negative values of n. 
 
Example  
 
To find a Z transform of a function, for example, anu[n],  we have to write following codes –  
>> syms a n f; 
>> f=a^n; 
>> ztrans(f) 
 
Note that there is also the iztrans() function which performs inverse Z transform. 
 
Pre-Lab Exercise – A.1: 
 
Find the Z transform for the signals listed in the above table and verify with the given results. 
 
Properties of Z transform: 

Properties
Uniqueness

Homogeneity

Additivity

Shifting

Convolution

 
Among different properties of z-transform, convolution property is an important one. It 
removes the complexity of doing convolution, because this property transforms the time 
domain convolution into a multiplication of two functions. 
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Pre-Lab Exercise – A.2: 
 
Let and . Determine 

 . Use conv() function to obtain the result and verify the result 
theoretically. 

21
1 432)( −− ++= zzzX 321

2 6543)( −−− +++= zzzzX
)()()( 213 zXzXzX =

 
 

Part – B 
 
Inverse Z-transform 
 
The inverse Z-transform is the conversion of Z-domain signal into time domain signal. The 
inversion can be done by Cauchy’s Integral theorem, long division process, partial fraction 
expansion etc.  
 
I) Partial fraction expansion: 
 
Suppose a function X(z) is given in Z-domain.  
 

)(
)(

1
)( 2

2
1

1

2
2

1
10

zA
zB

zazaza
zbzbzbb

zX N
N

M
M =

++++
++++

=
−−−

−−−

LL

LL
 

 
To convert it in the time domain, it is expressed as  
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Then performing partial fraction expansion on the proper rational part of X(z) to obtain 
 

∑ ∑
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Now the time domain signal x(n) is –  
 

∑ ∑
=

−

=
−

− −+⎥
⎦

⎤
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−
=
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k
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1 )(
1

1)( δ  

 

 
MATLAB representation: 
 
A MATLAB function residuez() is available to compute the residue part and the direct terms 
of a rational part in . [R, p, C] = residuez(b,a) finds the residues, poles and direct terms of 
X(z) in which two polynomial B(z) and A(z) are given in two vectors b and a. 

1−z
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Pre-Lab Exercise – B.1: 
 
1. A function X(z) is given below. 

143
)( 2 +−

=
zz

zzX  

Find the residue, poles and direct terms of it from the function and hence determine the 
inverse of X(z) manually. Verify your result using iztrans().  
 
II) Long Division: 
 
For causal sequences, the Z-transform X(z) can be expanded into power series in . In 
series expansion, the coefficient multiplying by  is then the n

1−z
nz − th sample x[n]. For a rational 

X(z), a convenient way to determine the power series is to express the numerator and the 
denominator as polynomials in , and then obtain the power series expansion by long 
division. 

1−z

 
MATLAB representation: 
 
By using impz() function we can get the sampled values in time domain from an analogous 
Z-domain function. Same process can be done by using a filter() function, where the input 
will be an impulse function. 
 
Pre-Lab Exercise – B.2: 
 
1. The transfer function of a causal system is given by 
 

21

1

12.04.01
0.21)(

−−

−

−+
+

=
zz

zzH  

 
Determine the first 10 coefficients of the impulse response of this system. 
 
 
 
 
 
 
 

Part – C 
 
Pole – zero plot & ROC for different cases 
 
The poles are those values for which the system transfer function becomes infinite. These are 
the roots of the denominator of a transfer function. 
 

©Dept of EEE  36 



Digital Signal Processing 1 Laboratory                                                        EEE 312
  

The zeros are those values for which the system transfer function becomes zero. These are 
the roots of the numerator of a transfer function. 
 
The pole zero plot of a system provides information about the system behavior. 
 
MATLAB representation: 
 
With the function zplane(), the pole zero plot can be obtained from which we can get the 
information of system behavior.  
 
Example: 
For a transfer function of 19.01

1)(
−−

=
z

zH ,   

if we write MATLAB code like –  
 
>> b=[1 0]; 
>> a=[1 -0.9]; 
>> zplane(b,a) 

the pole zero plot will be – 
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ROC : 
 

• The ROC of a causal signal is the exterior of a circle of radius α . 

• The ROC of an anticausal signal is the interior of a circle β . 
• The ROC of a noncausal signal is a ring (annular region) in the Z-plane. 

 
 
Pole location and time domain behavior for causal signals 
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Causal real signals with real poles or simple complex conjugate pair of poles, which are 
inside or on the unit circle are always bounded in amplitude. On the other hand, if they are 
outside the unit circle then the signals become unbounded. 
 
Effect of single pole: 
 
Effect of real poles:

 
 
 
 
 
 
 
 
 
Effect of complex conjugate pair of poles: 
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Effect of multiple poles: 
 
Multiple real poles: 
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MATLAB representation: 
 
From the above discussion it is known that different systems provide different impulse 
responses depending on their pole zero location. That’s why different signals can be 
generated from those defined systems. 
 
For a ramp signal we see that the signal should have 2 positive real poles on the unit circle. 
So define a system transfer function which will contain 2 positive real poles. Then obtain the 
impulse response of that system. 
 
>> num=[1 0 0]; 
>> den=[1 -2 1]; 
>> [h,t]=impz(num,den,100); 
>> stem(h) 
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Using sptool for system design: 
 
On the MATLAB command prompt type sptool to start the filter design tool. Click New 
Design, set Algorithm to Pole/Zero Editor, and delete all current poles and 
zeros by pressing Delete All. To be able to watch the frequency response simultaneously 
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while adding/moving/deleting poles/zeros, you should also open the View window from 
the small parent window (“Filters” specification is in the middle column). After adding a set 
of poles/zeros you can also observe the impulse response and step response for that particular 
design.  
 
 
Pre-Lab Exercises – C.1: 
 
Design a system whose impulse response gives a digital oscillation. 
 
 
Pre-Lab Exercises – C.2: 
 
Design a simple low pass and a high pass filter. 
 
 
Causality and stability: 
 

• An LTI system is causal if and only if the ROC of a system transfer function is 
the exterior of a circle of radius, ∞<r . 

• An LTI system is BIBO stable if and only if the ROC of the system transfer 
function includes the unit circle. 

 
So a causal LTI system is BIBO stable if and only if all the poles of H(z) are inside the unit 
circle. 
 
 
MATLAB representation: 
 
The inversion process can be done by any of the above described methods. The function 
zp2sos() can be used to convert the z-domain transfer function into the factored form 
whereas tf2zp() can be used to obtain poles, zeros and gain constant. 
 
 
 
 
 
 
Pre-Lab Exercise – C.3: 
 
Determine the system function and the response for a) unit step b) unit impulse input 
described by the difference equation- (assume a causal LTI system) 
 

)()1()( nxnyny +−=  
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Looking only the pole-zero plot of Y(Z),  state whether the system will be stable. 
Comment on ROC. 
 
Pre-Lab Exercise – C.4: 
 
Determine the system function and the unit sample response for a stable LTI system 
described by the difference equation- 
 

)1(
3
1)()1(

2
1)( −++−= nxnxnyny  

Comment on ROC. 
 
Pre-Lab Exercise – C.5: 
 
An LTI system is characterized by the system transfer function  

21

1

5.15.31
43)(

−−

−

+−
−

=
zz

zzH  

 
Specify the ROC of H(z) and determine h(n) for the following conditions: 
 

(a) The system is causal, (b) The system is anticausal, & (c) The system is noncausal. 
 
For which case, the system is stable?   
 
 
 
Pre-Lab Exercise – C.6: 
 
Express the following z – transform in factored form, find its poles and zeros, plot the poles, 
zeros and then determine its ROCs for causal cases, anticausal case and noncausal case. ( 
Here take the coefficients as the inputs from the keyboard. ) 
 

12181533
325644162)( 234

234

−+−+
++++

=
zzzz
zzzzzG  

 
 
Pole zero cancellation: 
 
When a Z-transform has a pole that is at the same location as a zero, the pole is cancelled by 
zero, consequently, the term containing that pole in the inverse z term vanishes. This pole 
zero cancellation can occur either in the system function itself or in the product of the system 
transfer function with the z-transform of the input signal. 
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Pre-Lab Exercise – C.7: 
 
Determine the system function and the output response for the causal system described by the 
difference equation- 
 

)()2(
6
1)1(

6
5)( nxnynyny +−−−=  

where,                             )1(
3
1)()( −−= nnnx δδ  

 
Is it possible to reconstruct the original system response from the output response?  

 
 
Pre-Lab Exercise – C.8: 
 
An LTI system is given by 

15.22

2

+− zz
z  

 
Make the system stable assuming the system (a) causal and (b) anticausal. 
 
 

Part – D 
 
Higher order stability testing  
 
 
For testing the stability of a higher order transfer function, a famous method called Schür 
Cohn stability test is used. 
 
The transfer function of a system is –  

)(
)()(

zA
zBzH =  

 
The denominator polynomial of the system transfer function is – 
 

N
N zazazazA −−− ++++= LLL2

2
1

11)(  
 
 
By denoting this denominator with a polynomial of degree m –  
 

∑
=

−=
m

k

k
mm zkazA

0
)()(  and 1)0( =ma  
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The reciprocal or reverse polynomial of  are the same as those of , but in the 
reverse order. In the Schür Cohn stability test, to determine a set of coefficients, called 
reflection coefficients,  from the polynomials . First, we set 

)(zBm )(zAm

NKKK LL,, 21 )(zAm

)()( zAzAN =  
and 

)(NaK NN =  
Then we compute the lower-degree polynomials , m = N, N-1, N-2, ……., 1, 
according to the recursive equation  

)(zAm

 

21 1
)()(

)(
m

mmm
m K

zBKzA
zA

−
−

=−  

where the coefficients  are defined as mK
)(maK mm =  

 
The Schür Cohn stability test states that the polynomial  has all its roots inside the unit 
circle if and only if the coefficients  satisfy the condition 

)(zA

mK 1<mK  for all m = 1, 2, ….., 
N. 
 
 
 
Pre-Lab Exercises – D: 
 
Write a generalized program in MATLAB which takes the coefficients of the denominator of 
a system transfer function as input and tests the system stability by Schür Cohn stability test 
method. 
 
Algorithm: 
 

• Take the inputs from the user. 
• Set or   kN aka =)(    f Nk ,,2,1 LL=
• Set   )(NaK NN =
• Then for 1,,1, LL−= NNm , compute )(maK mm =   where  1)0(1 =−ma

• Then compute   21 1
)()(

)(
m

mmm
m K

kbKka
ka

−
−

=− ,   1,,2,1 −= mk LL  

where   )()( kmakb mm −=  ,   mk ,,1,0 LL=  
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BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY 
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, 

DHAKA-1000,  BANGLADESH. 
 

COURSE NO.: EEE 312 
 

Experiment No.  – 4 
Phase І 

 
Frequency domain analysis of DT signals and systems 

 
 
Frequency analysis of signal involves the resolution of the signal into its frequency 
(sinusoidal) components. For the class of periodic signals, such decomposition is called a 
Fourier series. For the class of finite energy (aperiodic) signals, the decomposition is called 
the Fourier transform.These decompositions are extremely important in the analysis of LTI 
system because the response of an LTI system to a sinusoidal input is a sinusoid of same 
frequency but of different amplitude and phase. Furthermore, the linearity property of LTI 
system implies that a linear sum of sinusoidal components at the input produces a similar 
linear sum of sinusoidal components at the output, which differ only in the amplitudes and 
phases from the input sinusoids. 
 
Pre Lab Concerns:  
 

 Read this lab description carefully before coming to the laboratory class, 
so that you will know what is required. 

 Try to follow the lecture notes of EEE 311. 
 The problems that will be given in the class may differ from the given ones 

but they will certainly cover the syllabus. 
 Students must not use the function fft() unless instructed to do so. It is 

desired that students write codes to calculate DTFS coefficients, DTFT, 
and DFT coefficients from first principles. 

 You will be able to solve the problems in lab if you do practice before coming to 
class.   

 Do not bring any prepared MATLAB code in the lab with any portable 
device. 

 

New  Functions: 
                                                  freqz(), fft(), fftshift(), dftmtx() 
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Part – A 
 

Introducing DTFS, DTFT, DFT  
 
DISCRETE TIME FOURIER SERIES (DTFS) 
 
Let us consider a periodic sequence x(n)  with period N, that is x(n) = x(n+N) for all n. The 
Fourier series representation of x(n) consists of N harmonically related xponential functions 

1,...,1,0,
2

−= Nke N
knj π

 
 
And expressed as  

∑
−

=

=
1

0

2

)(
N

k

N
knj

k ecnx
π

 

 
This equation is often called the discrete-time Fourier series (DTFS). Fourier co-efficients 
{ck}, k=0,1,….,N-1 provide the description of x(n) in frequency domain.  
{ck}can be computed as 
 

∑
−

=

−
=

1

0

N
knj2

)(1 N

n
k enx

N
c

π

   

 
Note that  ck+N =ck. 
That is, {ck} is a periodic sequence with fundamental period N. Thus the spectrum of a signal 
x(n), which is periodic with period with period N, is a periodic sequence with period N. 
 
Average power can be given as 
 

∑ ∑
−

=

−

=

==
1

0

1

0

22 )(1N

k

N

n
kx nx

N
cP  

 
The sequence 2

kc for k=0,1,……,N-1 is the distribution of power as a function of frequency 
and is called the power density spectrum of the periodic signal.  
 
If the signal x(n) is real [x*(n)=x(n)],then, it can be shown that 
 
ck

*=c-k . Again the following symmetry relationship holds 
 

kc = kNc −  and      ck = -   cN-k  
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2
Nc =

2
Nc  and      cN/2 =0    if N is even 

2/)1( −Nc = 2/)1( +Nc  and      c(N-1)/2 = -   c(N+1)/2         if N is odd  

 
 
CALCULATION OF FOURIER SERIES COEFFICIENTS  
 
Let us consider a continuous rectangular pulse sequence of 1 ms period  and pulse width 0.1 
ms. The signal is sampled at 100kHz and sampled discrete with n its index is shown in figure 
1(b).  

 
Figure 1. A rectangular pulse in continuous domain and its sampled version. 

 
 
 
Now the following MATLAB code calculates the Fourier series coefficients from the first 
principle and from the Fourier series coefficients, again reconstructs the original periodic 
sequence. 
 
%Example 1 
%CALCULATION OF FOURIER SERIES COEFFICIENTS  
 
clear all; 
Fs=100e3; 
dt=1/Fs; 
 
%GENERATING THE RECTANGULAR PULSE TRAIN 
T=1e-3;                             %PERIOD OF THE PULSE TRAIN 
D=.1;                               %DUTY CYCLE 
PW=D*T;                             %PULSE WIDTH  
f=1/T;                              %ANALOG FREQUENCY 
t=-T/2:dt:T/2;                      %TIME INTERVAL FOR A PERIOD 
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n=t/dt;                             %INDEX FOR DATA POINTS IN A PERIOD 
L=PW/dt;                            %DATA POINTS IN THE THE HIGH TIME 
x=zeros(1,length(t));               %INITIALIZING A SINGLE RECTANGULAR PULSE 
x(find(abs(n)<=L/2))=1.1;           %GENERATION OF A SINGLE RECTANGULAR PULSE 
%END OF RECTANGULAR PULSE TRAIN 
 
figure(20),  subplot(211), plot(t, x, 'k','linewidth', 2), xlabel('Time (seconds)', 'fontsize', 14), ylabel('x(t)', 
'fontsize', 14), title('(a) Original continuous signal', 'fontsize', 14); 
subplot(212), stem(n, x, '.k', 'linewidth', 2);xlabel('Index, n', 'fontsize', 14), ylabel('x(n)', 'fontsize', 14), 
title('(b) Sampled discrete signal', 'fontsize', 14); 
 
 
N=length(x);    %TOTAL NO DATA POINTS IN A PERIOD 

Nc=N;  %TOTAL NO OF COEFFICIENTS 
if mod(Nc,2)==0, 
    k=-Nc/2:Nc/2-1; 
else 
    k=-(Nc-1)/2:(Nc-1)/2; 
end 
 
c=zeros(1,length(k));%INITIALIZING FOURIER COEFFICIENTS 
 
for i1=1:length(k), 
    for i2=1:length(x), 

        c(i1)=c(i1)+1/N*x(i2)*exp(-i*2*pi*k(i1)*n(i2)/N); ∑
−

=

−
=

1

0

N
knj2

)(1 N

n
k enx

N
c

π

 

    end 
end 
 
figure(2), subplot(211), stem(k,abs(c), '.k', 'linewidth', 2); xlabel('k', 'fontsize', 14), ylabel('|c_k|', 
'fontsize', 14), title('Fourier series coefficients c_k', 'fontsize', 14); 
subplot(212), stem(k,angle(c)*180/pi, '.k', 'linewidth', 2);xlabel('k', 'fontsize', 14), ylabel('angle(c_k)', 
'fontsize', 14) 
 
figure(3), stem(k*f,c, '.k', 'linewidth', 2); xlabel('Frequency (Hz)', 'fontsize', 14), ylabel('c_k', 'fontsize', 
14), title('Fourier series coefficients c_k', 'fontsize', 14); 
 
%START OF RECONSTRUCTION OF SIGNAL 

t_remax=T/2;  
t_re=-t_remax:dt:t_remax; 
n_re=t_re/dt; 
x_re=zeros(1,length(n_re)); 
 
for i1=1:length(k), 
    for i2=1:length(x_re), 

        x_re(i2)=x_re(i2)+c(i1)*exp(i*2*pi*k(i1)*n_re(i2)/N);  ∑
−

=

=
1

0

2

)(
N

k

N
knj

k ecnx
π

 

    end 
end 
%END OF RECONSTRUCTION OF SIGNAL  
 
figure(4),subplot(211), stem(n_re, x_re,'.k',  'linewidth',2);xlabel('n', 'fontsize', 14), 
ylabel('x_{reconstructed}', 'fontsize', 14), title('Reconstructed signal', 'fontsize', 14); 
subplot(212),plot(t_re, x_re,'k',0,0,  'linewidth',2);xlabel('t', 'fontsize', 14), ylabel('x_{reconstructed}', 
'fontsize', 14), title('Reconstructed signal', 'fontsize', 14); 
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Figure 2: Magnitude and phase spectrum of the discrete time signal. Note that the phase 

spectrum is not skew-symmetric with respect to k=0. It is an artifact of MATLAB and θ= 
+180o and -180o are in fact synonymous.  

 

 
Figure 3. Fourier series coefficients of the continuous time signal and indexed with respect to 

the analog frequency.  
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Figure 4. Reconstructed signal.  

 
Now vary t_remax (marked with in the code) in the code and observe that a periodic 
repetition is obtained. 

 
Figure 5. Periodic repetition of reconstructed signal. 
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Now change the total number of coefficients Nc (marked with in the code) to 3*N and 
observe the periodicity of ck with respect to n. 

 
Figure 6. Periodicity of Fourier coefficients. 

 
Now observe when we set the total number of coefficients to less than N. 

 
Figure 7. Effect of taking less no of FS coefficient in reconstructing the signal. Note that the 
higher number of coefficients we take the better the reconstructed signal matches with the 

original signal  
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Figure 8. Change of mean square error with the increase of total number of coefficient. Note 

that the higher no of coefficient we take the smaller the MSE and MSE=0 when Nc=N. 
 
Now generate a sinc function using a the following codes and examine its Fourier series 
coefficients. The results are shown in figure 5. 
 
 
 
%GENERATING A SINC PULSE  
T=1e-3; 
f=1/T; 
t=-2*T:dt:2*T; 
n=t/dt; 
x=sinc(2*f*t); 
N=length(t); 
%END OF SINC PULSE 

 

 
(a) (b) 

Figure 6. Periodic sinc pulse sequence and its Fourier series coefficients. 
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Exercise: 
1. Note that in the example 1, the time interval is defined from –T/2 to T/2, Change the 

interval to 0 to T and to –T/4 to 3T/4. Do you observe any change in the magnitude 
spectrum? Try to explain the observation. Change the interval to –T to T. Explain the 
observation. 

2. We have stated that ck+N =ck. Modify the code for example 1 and see whether you a 
periodic repetition of ck. 
N=length(x); 
 
if mod(N,2)==0, 
    k=-N:N; 
else 
    k=-(N-1):(N-1); 
end 

3. Take a sine wave and determine in spectrum.   
4. Derive the power density spectrum for a rectangular pulse train. 

 
DISCRETE TIME FOURIER TRANSFORM (DTFT) 
 

If x(n) is absolutely summable that is ∑
∞

∞−

∞<)(nx  then its discrete time Fourier transform 

is given by 
 

∑
∞

−∞=

−=
n

njenxX ωω )()(                        (1) 

Now ω is a real variable between - ∞ to + ∞  but one important property of )(ωX is its 
periodicity in ω with period 2л. So we only need one period of  )(ωX  i.e. ω є [0,2л] or  
[-л, л]. 
 
The inverse DTFT equation, in other words the equation for reconstructing the signal from 
X(ω) is given by 

∫=
π

ω ωω
π 2

)(
2
1)( deXnx nj  

 
 
CALCULATION OF FOURIER TRANSFORM FROM FIRST PRINCIPLE 
 
Since the frequency is continuous variable, DTFT cannot be implemented in digital hardward 
in rigorous sense. By defining a fine grid of frequency in the range [-π, π] 
the frequency variable is usually handled in DTFT implementation. In MATLAB we 
evaluate  )(ωX  at equidistant frequencies between [0,2л] and then interpolate using plot() 
function.   
Say  we want M equidistant samples between [0,2л] 
 

Then ,2
M

k
k

πω = k=0,1,…..,M-1   .   Then (1) van be written as 
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∑
=

−
=

Nn

nn

M
knj

k nxeX
1

)()(
2π

ω   where k=0,1,…..,M-1     (2) 

 
Although matrix method may be an easier approach for DTFT in some cases, we first 
examine calculation  DTFT of an aperiodic signal from first principles in the following 
example  
 
%Example 2 
%CALCULATION OF FOURIER TRANSFORM FROM FIRST PRINCIPLE 
 
clear all; 
 
%GENERATING A SINC PULSE  
f_c=1/8;       %DEFINING FREQUENCY VARIABLE FOR SINC PULSE 
n=-40:40;     %DEFINING THE INDEX FOR SINC PULSE 
x=sinc(2*f_c*n); 
%END OF SINC PULSE 
 
figure(1), stem(n, x, '.k');xlabel('n', 'fontsize', 14), ylabel('x(n)', 'fontsize', 14), title('Discrete time signal', 
'fontsize', 14); 
 
M=101;    %NUMBER OF POINTS IN DIGITAL FREQUENCY GRID 
w=linspace(-pi, pi, M);     %DEFINING THE DIGITAL FREQUENCY GRID 
dw=w(2)-w(1);                 %RESOLUTION OF DIGITAL FREQUENCY 
X=zeros(1,M);                   %INITIALIZING THE DTFT OF x(n) 
 
for i1=1:M, 
    for i2=1:length(x), 

        X(i1)=X(i1)+x(i2)*exp(-i*w(i1)*n(i2));  ∑
∞

−∞=

−=
n

njenxX ωω )()(  

    end 
end 
 
figure(2), plot(w,abs(X), 'k', 'linewidth', 2); xlabel('Frequency (rad/sec)', 'fontsize', 14), ylabel('X(w)', 
'fontsize', 14), title('FREQUENCY SPECTRA', 'fontsize', 14); 
 
%RECONSTRUCTION OF SIGNAL 
n_re=-80:80; 
x_re=zeros(1,length(n_re));    %INITIALIZING RECONSTRUCTED SIGNAL 
 
for i1=1:M, 
    for i2=1:length(x_re), 

        x_re(i2)=x_re(i2)+1/(2*pi)*X(i1)*exp(-i*w(i1)*n_re(i2))*dw;  ∫=
π

ω ωω
π 2

)(
2
1)( deXnx nj

 

    end 
end 
figure(3), stem(n_re, x_re,'.k',  'linewidth',1);xlabel('t', 'fontsize', 14), ylabel('x_{reconstructed}', 
'fontsize', 14), title('Reconstructed signal', 'fontsize', 14); 
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Figure 6. A sinc pulse (discrete)            Figure 7. Magnitude spectrum of the   signal 

 

 
Figure 8. Sinc pulse reconstructed using inverse DTFT. Note the differences in original and 

reconstructed signals. 
Now consider a sinc2 pulse and observe its frequency spectrum. 

  
(a) (b) 

Figure 9. A sinc2pulse (discrete) (a) and its frequency spectrum. 
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Now let us examine what happens if reconstruct the signal considering only a limited range 
of frequencies.  
 

 
Figure 10. Effect of taking a limited number of frequencies in reconstructing the signal for 
DTFT. 
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DTFT EQUATIONS IN MATRIX FORM: 
 
We can arrange DTFT equations in Matrix form. 
 
Let  w be the vector containing M, frequency points between [0,2л] 
       x be the data sequence having N data points 
       n be the time index vector 
       
 
X= WxT                                                     (3) 
 
where W is an M×N matrix defined as, 
 

W=       

⎥
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⎥
⎥
⎥
⎥
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⎢
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⎢
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The following example calculates the DTFT of a sequence x=[1, 3 , -9, 5, 10]; 
 
 
%Example 
%MATRIX IMPLEMENTATION OF DTFT 
x=[1, 3 , -9, 5, 10]; 
n1=-1;  %DEFINING THE INDEX OF FIRST ELEMENT OF x 
n2=3;   %DEFINING THE INDEX OF THE LAST ELEMENT OF x 
n=n1:n2;%INDEX OF x 
M=500;  %TOTAL NUMBER OF POINTS IN THE FREQUENCY RANGE 
w=(-M/2:M/2)*2*pi/M; %FREQUENCY GRID 
W=exp(-j*w'*n); % Matrix formation 
X=W*x'; 
figure(1), subplot(211),plot(w/(2*pi),abs(X),'k',  'linewidth', 2), xlabel('Digital frequency, f', 'fontsize', 
14),  ylabel('|X(f)|',  'fontsize', 14), title('Magnitude Spectrum', 'fontsize', 14); 
subplot(212),plot(w/(2*pi),angle(X)*180/pi, 'k', 'linewidth', 2), xlabel('Digital frequency, f', 'fontsize', 14),  
ylabel('angle(X(f))',  'fontsize', 14), title('Phase Spectrum', 'fontsize', 14); 
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Figure 11. DTFT of sequence calculated by matrix method. 

 
 
Problems (1-4 for Example 2): 

1. Increase the range of the frequency grid to [0, 2π]. Observe and explain the effects. 
2. Change the range of the frequency range to  [-2π, 2π]. Obsevre and exaplain the 

effects. 
3. Verify the effect of changing index (n) to -40:120, -40:80. In each case observe the 

reconstructed signal.  
4. If you reconstruct the signal in n_re=-240:240, why do you get a repetition of the 

aperiodic signal? 
5. Consider the continuous time signal shown in figure 12. Sample it and then find out 

the Fourier transform in terms of the analog frequency. 
6. Verify the duality property of DTFT with  rectangular pulse and sinc function. 
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Figure 12. Figure for problem 4. 

 
 
DTFT & Z-TRANSFORM: 
 
Fourier transform can be viewed as the z-transform of the sequence evaluated on the unit circle. 
 

∑
∞

−∞=

−
= =≡

n

nj
ez enxXzX j

ωωω )()()(   

 
If X(z) does not converge in the region 1=z  i.e if the unit circle is not contained in the region of 
convergence of X(z), the Fourier transform X(ω) does not exist. 
 
Example: 
 
Determine frequency response H(ω) of a system characterized by h(n)=(0.1)n u(n).Plot the magnitude 
and phase responses. 
 

Now, 11.01
1)( −−

=
z

zH    ROC: z  > 0.1   (as causal) 

 
Clearly ROC includes the unit circle hence DTFT exists. So 
 

ωω je
H −−

=
1.01
1)(  
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CALCULATING THE DTFT OF DT SIGNAL/SYSTEM DEFINED IN Z-
DOMAIN 
 
MATLAB function freqz(num,den,w) returns the frequency response(DTFT) vector H calculated at 
the frequencies (in radians per sample) supplied by the vector w of the DT signal or system defined in 
Z-domain by the Z-transform formed by (num, den). The following example calculates the DTFT of 
function which is defined by its Z-tranform. 
 
 
%Example  
%RELATIONSHIP BETWEEN Z-TRANSFORM & DTFT 
k=256; 
w=-pi:pi/k:pi; 
num=1; 
den=[1 -0.1]; 
H=freqz(num,den,w); 
figure(1), subplot(211),plot(w,abs(H),'k',  'linewidth', 2), xlabel('w (rad)', 'fontsize', 14),  ylabel('|X(w)|',  
'fontsize', 14), title('Magnitude Spectrum', 'fontsize', 14); 
subplot(212),plot(w,angle(H)*180/pi, 'k', 'linewidth', 2), xlabel('w (rad)', 'fontsize', 14),  
ylabel('angle(X(w))',  'fontsize', 14), title('Phase Spectrum', 'fontsize', 14); 

 

 

Figure 13. DTFT of the signal having the Z-transform, ωω je
H −−

=
1.01
1)(  
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DISCRETE FOURIER TRANSFORM (DFT) 
 
We know that aperiodic finite energy signals have continuous spectra (DTFT).  
 

∑
∞

−∞=

−=
n

njenxX ωω )()(  .In case of a finite length sequence x(n), 0≤n≤L-1., Then only L 

values of X(ω) over its period, called the frequency samples, are sufficient  to   determine 
x(n) and hence X(ω). This leads to the concept of discrete Fourier transform (DFT) which 
is obtained by periodic sampling of )(ωX  (DTFT). 
 
We often compute a higher point (N point) DFT where N > L . This is because padding 
the sequence x(n)  with N-L  zeros and computing an N point DFT results in  a  “better 
display” of the Fourier transform X(ω). 
 
 To summarize, the formulas are (for causal sequence)  
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In fact (3) is nothing but general DFT matrix equation.   
 
X=WN x      DFT equation 
 

X=
N
1 WN

* X     IDFT equation 

 
Where WN=e-j2л/N 

 
x=[x(0) x(1)   ……  x(N-1) ]T 

 
X=[X(0) X(1)  …… X(N-1)]T 

 
n 
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Note : WN matrix can be generated by dftmtx() function. 
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The following example calculates the 5 point DFT of the sequence,  x(n) =[1 1 0 0 1]. 
 
%Example 
%CALCULATION OF 5 POINT DFT 
clear all; 
x=[1,1,0, 0, 1]; 

N=5;     %NO OF FREQUENCY SAMPLES 
L=length(x); 
x=[x zeros(1,N-L)]; %ZERO PADDING 
n=length(x); 
n=0:N-1;    %INDEX OF DATA SEQUENCE 
k=0:N-1;    %INDEX OF FREQUENCY SAMPLE 
Wn=exp(-j*2*pi/N); 
WN=Wn.^(n'*k); 
X=WN*x';     %DFT 
figure(1), subplot(211),stem(k/N,abs(X),'k',  'linewidth', 2), xlabel('Digital frequency, f (Hz)', 'fontsize', 
14),  ylabel('|X(f)|',  'fontsize', 14), title('Magnitude Spectrum', 'fontsize', 14); 
subplot(212),stem(k/N,angle(X)*180/pi, 'k', 'linewidth', 2), xlabel('Digital frequency, f (Hz)', 'fontsize', 
14),  ylabel('angle(X(f))',  'fontsize', 14), title('Phase Spectrum', 'fontsize', 14); 
 abs(X) 
angle(X)*180/pi 
 
 
OUTPUT OF EXAMPLE 
abs(X) = 
3.0000    1.6180    0.6180    0.6180    1.6180  
angle(X)*180/pi= 
0         0 -180.0000 -180.0000    0.0000 
    

 
 

 
Figure 14. Plot of DFT 

 
In order to understand the effects of zero padding, we set N=1000, plot the coefficients 
with respect to digital frequency, f=k/N. Then same plot the coefficients of 5-point DFT 
with respect to f. You should appreciate the fact that  that the coefficients for 5-point 
DFT are actually samples from the DTFT.  
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Figure 15. Effect of zero padding. 

 
Parseval’s Theorem: 
 
It states that if ( ) ( )DFT

Nx n X←⎯⎯→ k   then 

 

1 1
* *

0 0
21 1

2

0 0

1( ) ( ) ( ) ( )

1. ( ) ( )

N N

n k

N N

n k

x n x n X k X k
N

i e x n X k
N

− −

= =

− −

= =

=

=

∑ ∑

∑ ∑
 

 
Hence energy is conserved in each domain. 
 
%Example 
%VERIFICATION OF PERSEVAL’S THEOREM 
x=ones(1,10); 
Et=sum(x.*x); 
X=fft(x,128); 
Ef=sum(X.*conj(X))/128 

 
RESULTS 
Et = 
        10 
 
Ef 
 
Ef =         10.0000 
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IMPORTANT PROPERTIES OF DFT: 
 
 
1. Periodicity: If x(n) and X(k) are an N-point DFT pair, then  
X(n+N)= x(n) for all n 
X(k+N)=X(k) for all k 
 
 
2. Linearity: 
If   

)()( 11 kXnx DFTN ⎯⎯⎯ →← −  
And  

)()( 22 kXnx DFTN ⎯⎯⎯ →← −  
 
Then for any real valued or complex valued constant a1 and a2
 

)()()()( 221111 kXakXanxanxa DFTN
ss +⎯⎯⎯ →←+ −  

 
3. Time reversal of a sequence: 
 

)())(()())(( kNXkXnNxnx N
DFTN

N −=−⎯⎯⎯ →←−=− −  
 
4. Circular time shift  reversal of a sequence: 
 

NkliDFTN
N ekXlnx /2)())(( π−− ⎯⎯⎯ →←−  

5. Circular frequency shift : 
 

N
DFTNNkli lkXenx ))(()( /2 −⎯⎯⎯ →← −π  

 
The following example illustrates the circular frequency shift property. 
 
%Example 
%CIRCULAR FREQUENCY SHIFT 
clear all; 
x=[1, 0,1, 0, 1]; 
N=10;    %NO OF FREQUENCY SAMPLES 
L=length(x); 
x=[x zeros(1,N-L)]; %ZERO PADDING 
n=length(x); 
n=0:N-1;    %INDEX OF DATA SEQUENCE 
k=0:N-1;    %INDEX OF FREQUENCY SAMPLE 
l=3;    %SHIFT  
for ii=1:N, 
  x(ii)=x(ii)*exp(i*2*pi*ii*l/N); 
end 
Wn=exp(-j*2*pi/N); 
WN=Wn.^(n'*k); 
X=WN*x';     %DFT 
 
figure(1),  subplot(313),stem(k,abs(X),'k',  'linewidth', 2),  ylabel('|X(k)|',  'fontsize', 14), title('Magnitude 
Spectrum', 'fontsize', 14)%, xlabel('k', 'fontsize', 14); 

©Dept of EEE  65 



Digital Signal Processing 1 Laboratory                                                        EEE 312  

 

 
Figure 16. Circular frequency shift. 

 
Sampling theorem revisited: 
 
For example, sampling xa(t) periodically at T seconds, we get 
 

( ) ( )ax n x nT=     n−∞ < < ∞
 
If xa(t) is an aperiodic signal with finite energy, then its spectrum can be given as 
 

2( ) ( ) j Ft
a aX F x t e π

∞
−

−∞

= ∫ dt  

 
Spectrum of discrete time signal is given by 
 

2( ) ( ) j fn

n
X f x n e π

∞
−

=−∞

= ∑  

The relationship of spectra between continuous and discrete time signal can be obtained 
as 
 

( ) [( ) ]s a
k

sX f F X f k F
∞

=−∞

= −∑   [ Recall that, f = F/Fs] 

 
[See Proakis for proof.] 
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Example :  
 
Consider, the aperiodic finite energy signal 
 

2

2

sin (100 ),
( )

0,
oc t t

m t
otherwise

⎧ ≤⎪= ⎨
⎪⎩

t
 

where, to = 0.1s . Baseband BW of the signal is 100 Hz. Show the spectra of the sampled signal 
for Fs = 4BW , Fs = 2BW , Fs = 1.25BW and Fs = BW. 

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
0

1

2

3

4
Spectra for fs=4BW

-500 -400 -300 -200 -100 0 100 200 300 400 500
0
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0

0.5

1

1.5
Spectra for fs=1.25BW
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Frequency (Hz)

Spectra for fs=fmfs = BW 

 
Figure 17: Spectra of signals sampled at different rate  
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The MATLAB codes for these figures are 
given below.  
clear all 
close all 
 
%fs=4*BW 
to=.1; 
ts=.0025; 
fs=1/ts; 
nup=round(to/ts); 
nlo=-nup;% generate time index 
n=nlo:nup; 
t=n*ts; 
m=(sinc(100*t)).^2; 
N=1024;% FFT bin size ,after zero padding 
fn = [0:1/N:5-1/N]*fs-5*fs/2; 
k=0:5*N-1; 
WN=exp(-j*2*pi/N); 
nk=n'*k; 
W=WN.^nk; 
M=m*W; 
%M=fft(m,1024); 
subplot(211),plot(fn,abs(fftshift(M)),0,0)% 
 
%fs=2*BW 
ts=.005; 
fs=1/ts; 
nup=round(to/ts); 
nlo=-nup;% generate time index 
n=nlo:nup; 
t=n*ts; 
m=(sinc(100*t)).^2; 
N=1024;% FFT bin size ,after zero padding 
fn = [0:1/N:5-1/N]*fs-5*fs/2; 
k=0:5*N-1; 
WN=exp(-j*2*pi/N); 
nk=n'*k; 
W=WN.^nk; 
M=m*W; 
%M=fft(m,1024); 
subplot(212),plot(fn,abs(fftshift(M)),0,0)% 
 

%fs=1.25*BW 
 
ts=.008; 
fs=1/ts; 
nup=round(to/ts); 
nlo=-nup;% generate time index 
n=nlo:nup; 
t=n*ts; 
m=(sinc(100*t)).^2; 
N=1024;% FFT bin size ,after zero padding 
fn = [0:1/N:5-1/N]*fs-5*fs/2; 
k=0:5*N-1; 
WN=exp(-j*2*pi/N); 
nk=n'*k; 
W=WN.^nk; 
M=m*W; 
%M=fft(m,1024); 
figure(2) 
subplot(211),plot(fn,abs(fftshift(M)),0,0)% 
 
%fs=BW 
 
ts=.01; 
fs=1/ts; 
nup=round(to/ts); 
nlo=-nup;% generate time index 
n=nlo:nup; 
t=n*ts; 
m=(sinc(100*t)).^2; 
N=1024;% FFT bin size ,after zero padding 
fn = [0:1/N:5-1/N]*fs-5*fs/2; 
k=0:5*N-1; 
WN=exp(-j*2*pi/N); 
nk=n'*k; 
W=WN.^nk; 
M=m*W; 
%M=fft(m,1024); 
subplot(212),plot(fn,abs(fftshift(M)),0,0) 
 

 
 
 
This laboratory manual is prepared by                                    
 
Toufiqul Islam & Asif Islam Khan 
 
and supervised by 
 
Prof. Md. Kamrul Hasan                    August 1, 2007 
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BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY 
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, 

DHAKA-1000,  BANGLADESH. 
 
COURSE NO.: EEE 312 

 
Experiment No.  – 4 

Phase ІІ 
 

Frequency domain analysis of DT signals and systems 
 

% Example teaches better than precept – S.Smiles 
 
In this phase, we will concentrate on major DFT applications such as linear and circular 
convolutions, estimation of correlations, frequency analysis, modulation and 
demodulation last but not the least applications in communications such as FDM. 
 
Pre Lab Concerns:  
 

 Read this lab description carefully before coming to the laboratory 
class, so that you will know what is required. 

 Try to follow the lecture notes of EEE 311. 
 The problems that will be given in the class may differ from the given 

ones but they will certainly cover the syllabus. 
 Students must not use the function fft() unless instructed to do so. It is 

desired that students write their own codes to calculate DFT 
coefficients from matrix equations. 

 Theoretical derivations are avoided in the manual. You can get the 
proofs in your textbook. 

 Do not bring any prepared MATLAB code in the lab neither in written 
form nor in any portable device. 

 
New functions used : 
 

mod ( ), gallery ( ), ifft ( ), convmtx ( ), hanning ( ), fir2 ( ) 
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1. Review of DFT : 
 
The Fourier transform of a sequence is readily obtained from its z-transform simply by 
setting the complex variable z equal to exp(jω). When the sequence of interest has a finite 
duration, we may go one step further and develop a Fourier representation for it by 
defining the discrete Fourier transform (DFT). The DFT is itself made up of a sequence 
of samples, uniformly spaced in frequency. The DFT has established itself as a powerful 
tool in digital signal processing by virtue of the fact that there exits efficient algorithms 
for its numerical computation such as FFT. 
 
Consider a finite duration causal sequence x(n), assumed of length N, then N-point DFT 
is given as 

1,....,1,0,)()(
1

0

2

−== ∑
−

=

−
NkenxkX

N

n

N
knj π

  

Note : Limit of summation will change for anticausal and non-causal sequences. 
 
The N-point inverse DFT (IDFT) of X(k) is defined by 
 

1,......1,0,)(1)(
1

0

2

−== ∑
−

=

NnekX
N

nx
N

k

N
knj π

 

 
The DFT has an interesting interpretation in terms of the z-transform: the DFT of a finite-
duration sequence may be obtained by evaluating the z-transform of that same sequence 
at N points uniformly spaced on the unit circle in the z-plane. This sampling process is 
illustrated in the following figure (for N=8). 

Unit 
circle 

 
 
 
 
 
 
 
 
 
 
   
 
 
 
Figure 1: A set of 8 uniformly spaced point
 
Though the sequences x(n) and X(k) are def
both represent a single period of their 
periodicity is the direct consequence of sam
continuous Fourier transform.  
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2. Implementing convolutions using the DFT: 
  
2.1 Circular Convolution: 
 
If an N point sequence is shifted in either direction, then the result is no longer between  
0 ≤ n ≤ N-1. Therefore we first convert x(n) into its periodic extension xp(n) and then 
shift by m samples to obtain  xp(n-m). Then finite duration sequence 
 
 x /(n) =    xp(n-m) for 0 ≤ n ≤ N-1  
                 0          otherwise  
          
           = x((n-m))N  (Represented as modulo-N index)  [See Proakis for details] 
 
Example: 
 
x =[1 2 3 4 5];  
 
Circularly shifting x by 2 samples will yield 
 
x / = [4 5 1 2 3];  
 

 
Figure 2 : Two sample circular right shift. 
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function [y,x]=cirshft(x,m,N) % for circular shifting 
x=[x zeros(1,N-length(x))]; 
n=0:N-1; 
n=mod(n-m,N); 
y=x(n+1); 
 
 
Circular convolution of x1(n) and x2(n) can be given as 
 

1

1 2
0

( ) ( ) (( ))
N

N
n

y n x n x m n
−

=

= ∑ −    (N be the length of longest signal vector) 

[See Proakis for illustration] 
 
For two 4 point sequence x1 and x2 , above equation can be written in matrix form  
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

)3(
)2(
)1(
)0(

)0()1()2()3(
)3()0()1()2(
)2()3()0()1(
)1()2()3()0(

)3(
)2(
)1(
)0(

1

1

1

1

2222

2222

2222

2222

x
x
x
x

xxxx
xxxx
xxxx
xxxx

y
y
y
y

 

 
 
 
where, 
 

)];3()2()1()0([
)];3()2()1()0([2

)];3()2()1()0([1
2222

1111

yyyyy
xxxxx

xxxxx

=

=

=
 

 
In MATLAB , circular convolution can be obtained easily by matrix operation 
 
y = gallery('circul',x2)'*x1'; % gallery function returns some basic test matrices. 
 
gallery('circul',x2)'  gives the circulant matrix of x2 
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Figure 3: Showing sample circular convolution, y(n) of x1(n) and x2(n)  
 
2.2 Multiplication of two DFTs and Circular Convolution: 
 
Suppose that we have two finite duration sequences of length N, x1(n) and x2(n). Their 
respective N-point DFTs are 
 

21

1 1
0

21

2 2
0

( ) ( ) 0,1,..., 1

( ) ( ) 0,1,..., 1

nkN
N

n

nkN
N

n

X k x n e k N

X k x n e k N

π

π

− −

=

− −

=

= =

= =

∑

∑

−

−

 

 

 
It can be shown that multiplication of the DFTs of two sequences is equivalent to the 
circular convolution of the two sequences in the time domain. [See Proakis for proof] 
 

 

 

1

1 2
0

1 2 1 2

( ) ( ) (( ))

( ) ( ) ( ) ( ) ( )

N

N
n

DFT

y n x n x m n

x n x n Y k X k X k

−

=

= −

= ⊗ ⎯⎯⎯→ =

∑

where, ⊗  denotes circular convolution. 
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If x1 and x2  are column vectors then circular convolution by DFT can be obtained in 

 = ifft( fft(x1) .* fft(x2) ); 

.3 Linear Convolution: 

uppose that we have input, x(n) of length L and filter response,h(n) of length M i.e 

(n) = 0              n < 0  and n ≥ L 

hen output response, y(n) can be given as 

 , which is a linear convolution equation. 

 
his equation can be expressed in matrix format, 

or L = 4 and M = 3, N = L+M-1 (length of convolved result, y) 

MATLAB as 
 
y
 
2
 
S
 
x
h(n) = 0     n < 0  and n ≥ M 
 
T
 

∑
−

=

−=
1

0
)()()(

M

k
knxkhny

T
 
F
 

(0) 0 0
(0)

(1) (0) 0 (0)
(1)

(2) (1) (0) (1)
(3) (2) (1) (2)

(4)
0 (3) (2)

(5)
0 0 (3)

x
y

x x h
y

x x x h
x x x h

y
x x

y
x

⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

M  

 

ery interesting technique, isn’t it?  

 signal processing, the better you handle equations in matrix format, the less it takes for 

or example, h = [1 2 3] and x = [1 2 2 1];  

hen convolution matrix of x in MATLAB is given by 

> convmtx(x,3) 

ns = 

 
x Convolution matrix of  

 
V
 
In
MATLAB to compute.(and the more you excel as well !!) 
 
F
 
 
T
 
>
 
a
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     1     0     0 

ence, result of linear convolution can be obtained as 

> x=[1 2 2 1]’; 

x,3)*h 

   1 

.4 Linear Convolution using DFT: 

 previous section, we see that length of y(n) is N=L+M-1 . If the sequence y(n)  is to be 

(k) = X(k)H(k)   ,    k=0,1,…..,N-1 

X(k)} and {H(k)} are the N-point DFTs of the corresponding sequences x(n) and h(n). 
h 

igure 4: DFT based implementation of linear convolution. 

     2     1     0 
     2     2     1 
     1     2     2 
     0     1     2 
     0     0     1 
 
H
 
>
>> h=[1 2 3]’; 
>> y=convmtx(
y = 
 
  
     4 
     9 
    11 
     8 
     3 
 
2
 
In
represented uniquely in the frequency domain by samples of its spectrum Y(w) at a set of 
discrete frequencies, the number of distinct samples must equal or exceed L+M-1. 
Therefore, a DFT of size N ≥ L+M-1 is required to represent {y(n)} in the frequency 
domain.  
 
Y
 
{
Since  the sequences have a duration less than N, we simply pad these sequences wit
zeros to increase their length to N. Obviously zero padding does not alter the spectra. 
 

 
 

x(n) 
M -1  

Zero-padding 

h(n) 
L -1  

Zero-padding 

L+M-1 
point DFT

L+M-1 
point DFT

L+M-1 
point IDFT 

y(n)

F
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Continuing from previous example, 
  
 h = [1 2 3] and x = [1 2 2 1];  

ere  = 6  then  

=[1 2 3 0 0 0]; and  x=[1 2 2 1 0 0]; Then in MATLAB , we can obtain the result as 

 = ifft( fft(x) .* fft(h) );% by DFT approach 

. Correlation: 

emember that the cross-correlation equation can be written as 

 
rom properties of DFT, we know that 

DFT
xy =− (Cross-energy spectral density.) 

 
or ergodic or power signal  

 
 
H  N
 
h
 
 
y
 
3
 
R
 

)(*)()()()( nynxlnynxlr
n

xy −=−= ∑
∞

−∞=

 

F
 

→ )()()()()( * kYkXkYkXlr

F
 

→ )()(1)()(1)(r̂ *
1

0

kYkX
N

lnynx
N

l DFT
N

n
xy ∑

−

=

−=  

 
imilarly ACF can be given as 

)(

S
 

→DFT
xx lr̂ 2* )(1)()(1 kX

N
kXkX

N
=  which is the discrete power spectrum of the 

signal. 

ence one important application of autocorrelation is the estimation of the energy/power 

xample: 

ind ACF of x(n) defined as follows: 

=[1 1 0 1];  We take length of x to be 4+4-1=7 samples by padding 3 zeros. 

 
H
spectrum density of the signal. 
 
E
 
F
 
x
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x=[1 1 0 1]; 

j(X1); 
*X1conj)); %  Calculation from Frequency domain 

00    1.0000    1.0000    3.0000    1.0000    1.0000    1.0000 

   1     1     3     1     1     1 

xercise 3.1 : 

ay, x1=rand(1,51) % random  signal 

    x2(n)=sin(2л(1000)n/10000); % 1000 Hz signal 

ind PSD of x(n) where   x(n)=x1(n)+x2(n);  There from find ACF of x(n). Verify the result by 

. Frequency analysis using DFT: 

he finite observational interval (say, To=LT, where L = number of samples and T = sample 

or example, 

x1=[x zeros(1,length(x)-1)]; 
X1=fft(x1); 
X1conj=con
Rx=fftshift(ifft(X1.
rx=xcorr(x); % Calculation in time domain 
 
Results:  
Rx = 
    1.00
rx = 
     1  
 
 
E
 
S
  
   
 
F
calculating ACF in the time domain. 
 
4
 
T
interval) for the signal places a limit on the frequency resolution; that is it limits our ability to 
distinguish two frequency components that are separated by less than 1/To = 1/(LT) in frequency. 
 
F
 

)2sin(05.0)2sin()( 21 tftftx ππ +=  
where,  

1 = 500 Hz and f2 = 1000 Hz   . Let  fs = 8000 Hz 

ase 1 : Take length(x), N = 40 

 f
 
C
Case 2 : Take length(x), N = 32 
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Figure  5: (a) - Magnitude Spectrum when N=40, (b) - Enlarged view for N = 40,  
                (c) - Magnitude Spectrum when N = 32. 
 
% figure 5 

=500; 
000; 

fs=8000; 
ts=1/fs; 
t=(0:4*fs/f2-1)*ts; 
x=sin(2*pi*f1*t)+0.05*sin(2*pi*f2*t); 

f=(0:length(t)-1)/(length(t)*ts)-1/ ; 
subplot(211),stem(t,x) 
xlabel('Time(seconds)'),ylabel('x[n]') 
subplot(212),stem(f,abs(fftshift(fft(x)))) 
xlabel('Frequency(Hz)'),ylabel('|X|') 
axis([-4000,4000,0,40]) 

 

ponents occur at integer 
z. That means frequency of the stronger ents  at 
00 and 600 Hz. However, a visual interpo does 

idway between 400 and 600 lly. 
m the main spectral peak is read inusoid 

ked. 
actly multiple of ∆f (Here ∆f = 250 Hz). that is, two sinusoids 

exactly fit in this 32 point signal for integer number of cycles. So in that case, weak 
rather f1 and f2 spectral peaks are distinct. (f1  = 2∆f and f2  = 

 
 
 

f1
f2=1

(2*ts)

(b) 

(c) 

|X| 

|X| 

 
Several points are worthy to note: 
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The frequency com

 40 ). 
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4
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4.1 DF
 
Con e

T of a simple sinusoid :  

sid r ,      )cos()( nTwnx x=  where we choose )4/(2 sx Fw π=  with Fs = 1. We are 
tusing signal length N  o be a power of 2 for fastest results. Here , N = 64.  

.
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de
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Figure 6: Spectrum when F(analog frequency) can be localized 
 
Here, normalized frequencies are 0.25 (F/Fs) and 0.75 or (0.75 – 1 = – 0.25, -F/Fs). 
 
4.2 DFT of a not-so-simple sinusoid: 

Here, set 

gn
itu

deMagnitude 

 
)15.0

4
(2

N
F

w s
x += π . i.e. raising the frequency half-bin than before. 
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1
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es)

pl
itu

de
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A
m

Amplitude 

Amplitude 
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Figure 7: Spectrum when F cannot be localized. 
 
In that case, sinusoid does not have integer number of cycles within N. So frequency of the 
sinusoid is no longer integer multiple of the bin-size (1/N). Hence, it is not localized in the DFT-
bins. In fact, power, which was supposed to be confined in a single frequency component, spreads 

itu
deMagnitude 
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into the entire frequency range. We say that the power has ‘leaked out’ into the entire frequency 
range. Consequently, this phenomenon is known as leakage. The following figure illustrates the 
occurrence of leakage. Here, signal is zero-padded to get a fine spectral view.  
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M
ag

ni
tu

de

N = 64 , Nfft = 1024

  
Figure 8: Interpolated spectrum after zero-padding.(DTFT) 
 
4.3 Windowing to improve spectral estimation 
 

equivalent to multiplying x(n) by a rectangular 

  

The unavoidable act of finite data duration is 
indow w(n) of length L.  

 
w
 

  where  
⎩
⎨
⎧ −≤≤

=
otherwise

Ln
nw

,0
10,1

)(   

 
Suppose,  nwnx ocos)( =  then 
 

))()((
2
1)(ˆ

oo WWX ωωωωω ++−=  

where, W(w) is Fourier transform of the window. 
 
Rectangular window function causes (see figure 8) false ripple or leakage in a spectral estimate. 
In order to this effect it is beneficial to use window functions whose Fourier transforms have 
lower sidelobes. 
 

 a 1st sidelobe -32dB relative to the 
ain lobe where as rectangular window has only -13dB relative distance.(See following figure)  

For this purpose, we may choose Hann window which has
m
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ann windowed m 

Obviously Hann windowing does not give you the true weight of spectral components, it  
esses false spectral peaks as a result of rectangular windowing. So purpose of  

ntent only.  
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Figure 9: H spectru
 
Note : 
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            windowing here is to get idea of spectral co
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Exercise 4 (4.1 – 4.3): 
 
1. 64 samples 125µs apart are available for x(t) = sin (2лf t) + 0.05sin (2 лf t), where f  and f  are  

  b) Perform windowing (Hann) and again plot the data sequence and magnitude spectrum  
        Comment on your result. 
 

Windowing not only distorts the spectral estimate due to the leakage effects, it also reduces  
      spectral resolution.” ---Justify this claim by explanation and simulated example.[See Proakis] 
 
3.  “Ability to resolve closely spaced spectral lines of different frequencies in limited by the  
      window main lobe width” --- Justify this statement by proper explanation and results of the  
      following problem.  

et,  

1 2 1 2 
    1062.5 Hz and 1625 Hz respectively. 
    a) Plot the data sequence and magnitude spectrum.(use stem() ) 
  

2. “

 
 L  nwnwnwnx o 21 coscoscos)( ++=   where w = 0.2л , w = 0.22л and w = 0.6л. 

. Modulation Theorem :  

then 

o 1 2 

 Consider, window lengths L = 25,50,100. Comment on your result.  
 
 
5
 
 

f  ()( ωXnx DTFT⎯⎯ →← ) )]()([
2
1cos)( ooo XXnnx ωωωωω −++↔  I

 
Consider the following example for DSB-SC modulation of an almost band limited signal, m(t). 
 

⎩
⎨=tm )(
⎧ ≤ tttc o),100(sin

  
otherwise,0

 

 where, to = 0.1s . Let, carrier, )2cos()( tftc cπ= where fc = 250 Hz. Let, fs = 1250 Hz. 
 
 
 
 

figure 10 %
to=.1; M=fft(m,1024); 

 ts=.001; 
c=250; 

M=M/fs;%scaling
U=fft(u,1024); f

fs=1/ts; 

=cos(2*pi*fc*t); 
=m.*c;% DSB -AM modulated Signal 

N=1024;% FFT bin size ,after zero padding 

U=U/fs;%scaling 
fn = [0:1/N:1-1/N]*fs-fs/2; 
subplot(211),plot(fn,abs(fftshift(M))) 
subplot(212),plot(fn,abs(fftshift(U))) 
 

t=[-to:ts:to]; 
m=sinc(100*t); 
c
u
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Figure 10: Spectra of message signal is shifted to the carrier frequency and magnitude is halved.  
 

Exercise 5.1:  
 
What happens if the duration of the message signal to changes; in particular; what is the effect  
of having large to’s and small to’s? What is the effect on the bandwidth? (for the example   
given, Figure 10) 
 
 
Now consider the demodulation of the DSB-SC AM signal. 
 

)]2()2([
4
1)(

2
1cos)( 2

ooo XXXnnx ωωωωωω −+++↔  

 
Then after proper low-pass filtering we get the following result.(Figure 11(b)) 
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Figure 11: Spectra for demodulation 
  
 
 
% figure 11 
y=u.*c; 
Y=fft(y,1024); 
Y=Y/fs; 

bplot(211),plot(fn,abs(fftshift(Y))) 
ut=200; 

ncut=floor(fcut*fs/N); 
H=zeros(1,N); 
H(1:ncut)=2*ones(1,ncut); 
H(N-ncut+1:N)=2*ones(1,ncut); 
Uprime=Y.*H; 
subplot(212),plot(fn,abs(fftshift(Uprime))) 
 

figure(2) 
su
fc
 

(a) 

(b) 

 
 
Exercise 5.2: 
 
Consider the following FDM system.  
   

⎩
⎨
⎧ ≤

=
⎩
⎨
⎧

=t)(
≤

otherwise
tttc

tm
otherwise

tttc oo

,0
),100(sin

)(,
,0

),100(sin 2

21  

here, to = 0.1s . Let, carrier, 

m

w )2cos()(
11 tftc cπ= where fc1= 250 Hz. Let, fs = 2000 Hz. 

tft cand carrier, 2c )2cos()(
2

π= where fc2 = 750 Hz. Obtain magnitude spectra at different stages 
of the system. 
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Figure 11: Simple FDM system 
 

m1(t) 

1(t) 

 
Figure 12: Spectra of FDM signal. 
 
Appendix :  
 
Generating arbitrary bandlimited input sequence for test purpose: 
 
M-function fir2() can be used to generate a causal finite-length sequence with a bandlimited 
frequency response. For example, we want a sequence with the following spectrum. 

(n,f,m) returns row vector b containing the n+1 coefficients of an order n FIR 
by vectors 

• f is a vector of frequency points in the range from 0 to 1, where 1 corresponds to the 

• m is a vector containing the desired magnitude response at the points specified in f.  
m must be the same length. 

 
r2()   : fi

 
• b = fir2

filter. The frequency-magnitude characteristics of this filter match those given 
f and m: 

Nyquist frequency. The first point of f must be 0 and the last point 1. The frequency 
points must be in increasing order.  

            f and 

c

m2(t) 

c2(t) 

u(t) 

BPF 

BPF 

c1(t) 

c (t) 2

LPF 

LPF 

m1(t) 

m2(t) 

y1(t) r1(t) 

r2(t) y2(t)
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igure 13: Arbitrary bandlimited u

> w=[0 pi/3 2*pi/3 pi];% 
> freq=w/pi; % Normalized angular fr
> x=fir2(99,freq,mag); % Gener
> 
> plot(w/pi,abs(X),'k', width',2) 

-π 

|X(ω)|

 
 
 
F  magnit
 
 
> digital angu
>
> ating
> [X,w]=freqz(x,1,512); % DTFT 
> 'Line
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Figure 14: Magnitude spectra upto π (Ny
shown.  
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FAQs :  

n we be certain that most of the frequency contents of x(t) are in the DFT? 

ns : To get X(k) from x(t), we need first to sample x(t) making sure that fs , the sampling 
equency used to produce x(n), is at least twice fm , the maximum frequency in x(t). This is 
ecessary to avoid aliasing. Next, N samples should be collected from x(t) in NTs sec, where Ts = 
лfs . The number of samples N is inversely related to the frequency resolution, ∆f  according to 

   

 
1. How ca
 
A
fr
n
2
 

 Hz
N

he smaller the frequency resolution is, the better is the process of detecting most of the 

f
f s=∆    

1 2
ion if we append zeros to the end of  x1(n) and x2(n) so that the number of samples in 

1 is the number of samples in x1(n) and N2 is the 

T
frequency components in x(t). 
 
2. Is the Circular Convolution the same as the Linear Convolution ?  
 

ns: The circular convolution of two signals x (n) and x (n) will be the same as the linear A
convolut
x1(n) and x2(n) will be N1 + N2 – 1 where N
number of samples in x2(n). 
 
 
3. Is ?)()( kXX ≅ω   

 
Ans: Due to the inherent factor 1/Ts in calculating the Fourier transform of discrete signals(due to 
sampling), the magnitude of the DFT, |X(k)| should be multiplied by Ts to get the approximation 
to |X(w)|, continuous time Fourier transform . 
 
4. Convolution can be performed in time domain or can be obtained by DFT-IDFT  

   relations. Which is faster? 

Create two signals x  and x2 that each have 5,000 random elements and compare the length 

%by DFT 

y=ifft( fft(x1) .* fft(x2) ); 

to a hidden global variable and toc reads that variable, compares it 
rrent time, and displays the difference.  Record how long it takes with each method, 
ared to be surprised. 

 seconds.(by conv) 
conds.(by DFT) 

  
 

ns: 1A
of time it takes to circularly convolve the two functions by matrix relation(time domain approach) 
and the DFT method given.  
 

by conv %
tic 
x1=rand(1,5000); 
2=rand(1,5000); 

 
tic 

x
y=gallery('circul',x2)'*x1'; 
toc 

toc

 
ic saves the system clock inT

with the cu
 be prepand

 
Sample Result: 
Elapsed time is 833.422000

sed time is 1.516000 seElap
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Ins
 
1. W  a white noise sequence? Flat !! .Lets  
    c andom white noise sequence, w(n), obtain Rw  
    ( FT. It is better to plot PSD curve in     
    10log(PSD). Vs 
 
2. Present a technique to obtain N-point DFTs of two real sequences using a single N- 
     point DFT . 
 
     Say, x(n) = {1, 2, 0, 1} and y(n) = {2, 2, 1, 1} 
 
     Obtain X(k) and Y(k) by using 4-point DFT only once. 
 
3. Observe the output spectrum of an up-sampler. Consider the bandlimited input   
     sequence used in Appendix. If L is the upsampling factor then 
 

>> y=zeros(1,L*length(x)); 
>> y(1:L:length(y))=x; % up-sampled sequence 

     
      Explain your answer on mathematical basis.[Hint : Find z-transform expression of  
      upsampler output. Take help from Experiment 2 –Exercise 1.3] 
    
Reference :  
 
1) Proakis & Manolakis,”Digital Signal Processing:Principles,Algorithms and Applications.”,Prentice Hall   
    Ltd. 
2) Mitra,” Digital Signal Processing: A Computer Based Approach” , Edition 1998, Tata McGraw   
    -Hill Co. Ltd. 
3) Denbigh, ”System Analysis and Signal Processing” , Edition 1998, Addison-Wesley. 
4) Elali, “Discrete Systems and Digital Signal Processing with MATLAB® ” ,Edition 2004, CRC  Press 
5) Ingle & Proakis, “Digital Signal Processing using MATLAB® “ ,Edition 2000 Thomson-Brooks/Cole Co . 
6) Salehi & Proakis, “Contemporary Communication Systems using MATLAB®”,Thomson-Brooks/Cole Co 
 
 
 
This laboratory manual is prepared by                                    

 
Toufiqul Islam  
 
and supervised by 
 
Prof. Md. Kamrul Hasan       July 28, 2007 
 

ightful Exercises: 

hat do you know about the nature of PSD of
heck it out. First, obtain a 1000 point r

orm DTautocorrelation) and then perf
ω format. Comment on your result. 
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BANGLADESH UNIVERSITY OF ENGINE
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, 

ERING AND TECHNOLOGY 

COURSE NO.: EEE 312 

Experiment No.  – 5 

 
Object ilters and covers the systematic methods 

inite im ard filter design techniques used in this 
e

troduction:  

 
ess is called 

ecified 

( ) ( ) ( )
N M

i ky n b x n i a y n k
−

= − − −∑ ∑                        (1) 

efficients which paramete ze the filter. This filter is said to have N zeros 
ew value of the output signal, y(n), is determined by past values of the 

utput, and by present and past values of the input. The impulse response, h(n), is the response of 
ut of

DHAKA-1000,  BANGLADESH. 
 

 

 
 FIR Filter Design 

 

ive: This lab introduces the concepts of digital f
pulse response (FIR) filter design. The standof f

experiment includ  Filter Design using Standard Windows and Parks-McClellan algorithm. 
When the students will complete the lab, they will able to design FIR filters to meet the 

cifications and compare different filter design techniques. spe
 
In
 
In digital signal processing applications, it is often necessary to change the relative amplitudes of
frequency components or remove undesired frequencies of a signal. This proc
filtering.  
 
A linear and time-invariant causal digital filter with input x(n) and output y(n) may be  sp
by its difference equation  
 

1

0 1i k= =

 
where bi and ak are co
and M poles. Each n

ri

o
the filter to an inp  δ (n), and is therefore the solution to the recursive difference equation 

i k
i k

h n b n i a h n kδ
= =

= − − −∑ ∑                       (2) 

 

 
1N M−

0 1
( ) ( ) ( )
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There are two general classes of digital filters: infinite impulse response (IIR) and finite impulse 
response (FIR). The FIR case occurs when ak = 0, for all k. Such a filter is said to have no poles, 
only zeros. In this case, the difference equation (2) becomes 
 

( ) ( )
N

ih n b n iδ
−

= −∑                                        (3) 

Since (3) is no longer recursi inite duration N. In the case 
where , the difference equation usually represents an IIR filter. In this case, (2) will usually 
generate an impulse response which  ∞. 
 
By taking Z-transforms of both sid
 

                         

1

0i=

 
ve, the impulse response has f

0ka ≠
 has non-zero values as n →

es of equation (1), we obtain 

1

0 ii
M k

b z

a z
=

1

( )( )
( ) 1

N i

kk

Y zH z
X z

− −

−
=

= =
+
∑
∑

           (4) 

 
 

ation, some methods may be more 
bust to quantization error, require fewer multiplies or adds, or require less memory. Fig. 1 

 known as the direct form implementation; it works for any discrete-time 
lter described by difference equation (1). Note that the boxes containing the symbol z-1 

                          

 
From this formula, we see that any filter which can be represented by a linear difference equation 
with constant coefficients has a rational transfer function (i.e. a transfer function which is a ratio 
of polynomials). There are many different methods for implementing a general recursive 
difference equation of the form (1). Depending on the applic
ro
shows a system diagram
fi
represent unit delays, while a parameter written next to a signal path represents multiplication by 
that parameter. 
 

 
Fig. 1: Direct form implementation for a discrete-time filter described by a general difference 

equation of the form (1). 
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c

                       

Filter design techniques: 
 
1. Filter Design Using Truncation 
 

eally, a low-pass filter with cutoff frequency ω  should have a frequency response of Id

1,| |ω ω
( )

0, < | |
cjw

d
c

H e
ω ω π

⎧
= ⎨

≤
≤⎩

 

 
and a corresponding impulse response of 
                           

1( ) ( ) sinc , <
2

j j n c c
d d

nh n H e e d n
π

ω ω

π

ω ωω
π π π−

⎛ ⎞= = − ∞ < ∞⎜ ⎟
⎝ ⎠∫  

 
 
      
However, no real filter can have this frequency response because hd(n) is both noncausal and 

finite in duration. 
 
One method for creating a realizable approximation to an ideal filter is to truncate this impulse 
response outside of 

in

[ ],n M M∈ − . 
 

s in c , , ..., 0 ,1, ...
( )

0 ,

c c n n M M
h n

o th erw ise

ω ω
π π

⎧ ⎛ ⎞ = −⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪⎩

 

                
 
In order to visualize the effect of truncation, we express the truncated impulse response as 
                                        h(n) = hd(n)w(n)         
where, w(n) is a finite duration rectangular window defined as 
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1, | |
( )

0,
n M

w n
otherwise

≤⎧
= ⎨

⎩
 

ince the multiplication by the window function in time domain corresponds to a convolution in 
e DTFT domain, we can easily visualize the spectrum of the designed FIR filter as shown 

elow: 

 
S
th
b
 

 
 

Fig. 2: The periodic convolution produces a smeared version of the ideal impulse response. 

ncated filter is given by 

              

 
 
A truncated impulse response is of finite duration, yet the filter is still noncausal. In order to 
make the FIR filter causal, it must be shifted to the right by M units. For a filter of size N = 2M + 
 this shifted and tru1

        (5) 
 
This time shift of (N − 1)/2 units to the right corresponds to multiplying the frequency response 
by e-jω(N-1)/2. It does not affect the magnitude response of the filter, but adds a factor of −jω(N − 
1)/2 to the phase response. Such a filter is called linear phase because the phase is a linear 

of ω. 

e both 
characteristics in the time domain. When N is 

 the sinc function, but when N is 
ven, then the two values at n = N/2 and n = (N/2) − 1 straddle the peak. 

 
 

function 
 
It is interesting to see that the filter formula of (5) is valid for N both even and odd. Whil
of these filters are linear phase, they have different 
odd, then the value at n = (N −1)/2 is sampled at the peak of
e
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Filter Design Using Standard Windows 
 
We may generalize the idea of truncation by using different windowing functions to truncate an 

eal filter’s impulse response. More desirable frequency characteristics can be obtained by 

 
 

                                    

id
making a better selection for the window, w(n). In fact, a variety of raised cosine windows are 
widely used for this purpose. Some popular windows are listed below. 
 

1. The rectangular window

1, 0 1
( )

0,
n M

w n
otherwise

≤ ≤ −⎧
= ⎨

⎩  

2. Bartlett window 
 

                                   

2 1, 0
1 2

( ) 2 12 , 1
1 2

0,

n Mn
M

w n n M n M
M

otherwise

−⎧ ≤ ≤⎪ −⎪
= −⎨ − ≤ ≤⎪ −

⎪
⎩

 −

 
3. Hanning window 

 
20.5 1 cos , 0 1

( ) 1                                         
0, otherwise

n n M
w n M

π⎧ ⎡ ⎤⎛ ⎞− ≤ ≤ −⎪ ⎜ ⎟⎢ ⎥= −⎝ ⎠⎨ ⎣ ⎦

 
4. Hamming window 
 

⎪
⎩

 

20.54 0.46cos , 0 1
( ) 1

0,
w n M

otherwise
                                   

n n Mπ⎧ ⎛ ⎞− ≤ ≤ −⎪ ⎜ ⎟

5. Blackman window 

= −⎝ ⎠⎨
⎪⎩

 

 

 
2 40.42 0.5cos 0.08cos , 0 1

( ) 1 1
n n n M

w n M M
π π⎧ ⎛ ⎞ ⎛ ⎞

0, otherwise

− + ≤ ≤ −⎪ ⎜ ⎟ ⎜ ⎟= − −⎝ ⎠ ⎝ ⎠

⎩
 ⎨

⎪
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6. Kaiser window 
 

[ ]

221 1
1

( ) , 0 1

0,

o

o

nI
M

w n n M
I

otherwise

β

β

⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥− −⎜ ⎟−⎪ ⎝ ⎠⎢ ⎥⎣ ⎦= ⎨ ≤ ≤ −
⎪
⎪
⎩

 

 
where, I [.] is the modified zero-order Bessel function, and βo  controls the shape of the window. 
Large values of β  reduce the window sidelobes and therefore result in reduced passband and 
stopband ripple. 
 
 
In filter design using different truncation windows, there are two key frequency domain effects 
that are important to the design: the transition band roll-off, and the passband and stopband 

pple (see Fig. 2). There are two corresponding parameters in the spectrum of each type of 
window that influence these filter parameters.  
 

f is related to the width of center lobe of e window’s magnitude 
spectrum.  

 The ripple is influenced by the ratio of the mainlobe amplitude to the first sidelobe 
amplitude (or difference if using a dB scale).  

 
These two window spectrum parameters are not independent, and one can easily find a trend by 
examining the spectra for different windows.  
 
The ainlobe width and the peak-to-sidelobe amplitude are shown in 
Table 1. 
 

Table 1 
Main lobe width Peak-to-side lobe 

amplitude (dB) 
 

ri

 The filter’s roll-of th

 theoretical values for the m

Window name 

Rectangular 4
M
π  

-13 dB 

Bartlett 8
M
π  

-27 dB 
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Hanning 8
M
π  

-32 dB 

Hamming 8
M
π  

-43 dB 

Blackman 12
M

π  
-58 dB 

 
 

 
 
Filter Design Using the Kaiser Window 
 

The Kaiser window function of length M is defined as 
 

                              [ ]

221 1

0,

nI

otherwise

β
⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥− −

1
( ) , 0 1

o

o

M
w n n M

I β

⎜ ⎟−⎪ ⎝ ⎠⎢ ⎥⎣ ⎦= ⎨ ≤ ≤ −
⎪  
⎪
⎩

 
 The Kaiser filter must be designed to meet the smaller of the two ripple constraints:   

                                        { }min ,p sδ δ δ=  
 The values of β  and M could be chosen to meet any set of design parameters, 

( , , )p sδ ω ω , by defining A = −20 log10δ  and using the following two equations: 
 

                
 

       81 AM
⎡ ⎤−

= +
2.285( )s pω ω⎢ ⎥

−⎢ ⎥⎢ ⎥
 

where, ⌈.⌉ ncti smallest inte  than or equal to 
x. 
 
 
Filter Design Using Parks-McClellan Algorithm 
 

   

 is the ceiling fu on, i.e. ⌈x⌉ is the ger which is greater
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Kaiser win  versatile since they allow the design of arbitrary filters which meet specific 
design constraints. However, filters designed with Kaiser windows still have a number of 
disadvanta ample, 

 s are not aranteed to be the minim ilter which meets the 
straints. 

 rs do not allo  passband and stopband ripple to be varied independently. 
 
In 1972, Parks and McClellan devised a methodology for designing symmetric filters that 
minimize filter length for a particular set of design constraints {ωp, ωs

dows are

ges. For ex
Kaiser filter gu um length f
design con
Kaiser filte w

, pδ , and sδ }. The 
sulting filters minimize the maximum error between the desired frequency response and the 

ctual frequency response by spreading the approximation error uniformly over each band. The 
the Remez exchange algorithm and Chebyshev 

pproximation theory. Such filters that exhibit equiripple behavior in both the passband and the 
stop
 
Designing a filter with the Parks and McClellan algorithm is a two step process. First the length 
(i.e. order) of the filter must be computed based on the design constraints. Then the optimal filter 
for a specified length can be determined. As with Kaiser windows, the filter length computation 
is a  resulting filter may exceed or violate the de gn constraints. This is 
generally not a problem since the filter can be redesigned for different lengths until the 
constraints are just met. The Matlab command for computing the approximate filter length is  

[n, fo, mo, w] = remezord (f, m, ripple, 2*pi) 
where the inputs are: 
 
f - vect ber of band ed e frequencies. For a simple low pass filter, f = 
[wp ws s 
 
m - vector g imple low pass 

 = [1 0]. 
 
ripple - vector containing the allowed ripple in each band. For a simple low pass filter ripple = 
[delta_p delta_s], where delta_p and delta_s are the passband and stopband ripples, respectively. 
 

e, in radians, that corresponds to the sampling frequency. 

utputs of the command a n = filter length - 1, and the vectors fo, mo, and w which are 
ediate filter parameters. 

 

ezord, and the output b is a vector of FIR filter coefficients such that 

                          

re
a
Parks and McClellan algorithm makes use of 
a

band, and are sometimes called equiripple filters. 

pproximate so the si

or containing an even num g
], where wp and w are the passband and stopband frequencies, respectively. 

 containing the ideal filter ma nitudes of the filter in each band. For a s
filter m

2*pi - valu
 
The o re 
interm

Once the filter length, n, is obtained, the Matlab command for designing a Parks-McClellan filter 
is b = remez (n, fo, mo, w). The inputs n, fo, mo, and w are the corresponding outputs of 
rem
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Labwork 
 

1. Plot the rectangular, Bartlett, Hanning, Hamming, and Blackman window functions of 
ot command. Then compute and plot the DFT length 21 on a single figure using the subpl

a t m gnitude of each of the five windows. Plot the magnitudes on a decibel scale (i.e., plo
20 log10 |W(ejω)|).  

 
Hint: Use at least 512 sample points in computing the DFT.  
 
Measure the null-to-null main lobe width (in rad/sample) and the peak-to-side lobe 
amplitude (in dB) from the logarithmic magnitude response plot for each window type. 
The Matlab command zoom is helpful for this. Make a table with these values and the 
theoretical ones. 
 

2. Plot the Kaiser windows and their DFT magnitudes (in dB) for M = 21 and the following 
values of  β  

                                       β  = 0, 1, 5. 
 
3. Write a Matlab program that computes the truncated and shifted impulse response of size 

N for a low pass filter with a cutoff frequency of ωc = 2.0. For each of the following 
filter sizes, plot the magnitude of the filter’s DFT in decibels: 

 
 N = 21 

Submit the plots of the magnitude response in decibels for the two filters. 

e following design 

                        

 N = 101 
 
             Report: 

(a) Submit the plots of the magnitude response for the two filters (not in decibels). 
On each of the plots, mark the passband, the transition band and the stopband. 

(b) 
(c) Explain how the filter size effects the stopband ripple. Why does it have this 

effect? 
 
4. Design a low pass filter, h(n) using Kaiser window with th

specifications: 
 

                     
Plot the magnitude of the DFT of h(n) for |ω| < π  . Create three plots in the same figure: one that 

ows the entire frequency response, and ones that zoom in on the passband and stopband ripple, sh
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Mark , , ,p s p sδ δ ω ωrespectively. on this plot where appropriate. (Do not use a decibel scale on 
is set of plots.) 

            

th
 

 
  Report: 

(a) Submit the values of β  and M that you computed. 
(b) Submit the plot of the filter’s magnitude response. Make sure the plot is 

ple. Does this filter meet 

 
 

5. 
ions given in step 2.  

e assband and stopband ripple of the filter that was designed.  

Adjust the filter length until the minimum order which meets the design constraints is 

 
              

band ripple, and   
stopband ripple. How accurate was the filter order computation using 
Matla  d? How does the length of this filter compare to the filter 
designed using a Kaiser window? 

 

               
 
 
Thi o
 
Mohammad Ariful Haque 
 
and supervised by 
 
Prof. Md. Kamrul Hasan       August 28, 2007 
 

 

labeled. 
(c) Submit the values of the passband and stopband rip

the design specifications? 

Now design a symmetric FIR filter using remezord and remez in Matlab to meet the 
design specificat
 
Compute the DFT of the filter’s response for at least 512 points, and use this   result to 
compute th  p
 

found. Plot the magnitude of the DFT in dB of the final filter design. 

   Report: 
(a) Submit the final measured values of filter length, pass

b’s remezor

 
(b) Submit the plot of the filter’s DFT. How does the frequency response of the 

Parks-McClellan filter compare to the filter designed using the Kaiser
window? Comment on the shape of both the passband and stopband. 

s lab ratory manual is prepared by                                    
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