Class Test 1

EEE 303: Digital Electronics

Total Marks: 20
Time: 15 minutes
Student Number:
Date:

1. A circuit with two outputs has to implement the following functions

$$
\begin{aligned}
& f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\sum m(4,6,7,9,11,12,14,15)+D(1,3) \\
& g\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\sum m(1,4,9,12)+D(3,6,14)
\end{aligned}
$$

Design the minimum cost circuit and compare its cost with combined costs of two circuits that implement f and g separately. Assume that the input variables are available both in uncomplemented and complemented forms.

Class Test 2

EEE 303: Digital Electronics

Total Marks: 20
Time: 20 minutes
Student Number:
Date:

SET - A

1. A combinational circuit is defined by the following three functions:
i. $F_{1}=x^{\prime} y^{\prime}+x y z^{\prime}$
ii. $\quad F_{2}=x^{\prime}+y$
iii. $\quad F_{3}=x y+x^{\prime} y^{\prime}$

Design the circuit with only a decoder with an enabler pin and some external gates.
2. Construct the truth table for a 4 to 2 input priority encoder with input priorities $\mathbf{w}_{\mathbf{1}}$, $\mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{0}}, \mathbf{w}_{\mathbf{3}}$ where $\mathbf{w}_{\mathbf{1}}$ has the highest priority and $\mathbf{w}_{\mathbf{3}}$ has the lowest. The output binaries are denoted as $\mathbf{y}_{\mathbf{0}}$ and $\mathbf{y}_{\mathbf{1}}$. Now, design the circuit for the encoder using only 4 to 1 multiplexers.

Class Test 2

EEE 303: Digital Electronics

Total Marks: 20 Time: 20 minutes
Student Number: Date:
SET - B

1. Construct the truth table for a 4 to 2 input priority encoder with input priorities $\mathbf{w}_{\mathbf{1}}$, $w_{\mathbf{3}}, w_{\mathbf{0}}, \mathbf{w}_{\mathbf{2}}$ where $\mathbf{w}_{\mathbf{1}}$ has the highest priority and $\mathbf{w}_{\mathbf{3}}$ has the lowest. The output binaries are denoted as $\mathbf{y}_{\mathbf{0}}$ and $\mathbf{y}_{\mathbf{1}}$. Now, design the circuit for the encoder using only 4 to 1 multiplexers.
2. A combinational circuit is defined by the following three functions:
i. $F_{1}=x^{\prime}+y$
ii. $F_{2}=x^{\prime} y^{\prime}+x y$
iii. $F_{3}=x y z^{\prime}+x^{\prime} y^{\prime}$

Design the circuit with only a decoder with an enabler pin and some external gates.

Class Test 3

EEE 303: Digital Electronics

Total Marks: 20

SET - A

1. Consider the following timing diagram. Assume that the D and Clock inputs are applied to the circuit in Fig. 1, draw waveform for the Q_{a}, Q_{b} and Q_{c} signals.

2. Draw the circuit diagram of a three bit shift register using JK flip flops only.

Class Test 3

EEE 303: Digital Electronics

Total Marks: 20

Time: 20 minutes
Student Number:
Date:

SET - B

1. Consider the following timing diagram. Assume that the D and Clock inputs are applied to the circuit in Fig. 1, draw waveform for the $\mathrm{Q}_{\mathrm{a}}, \mathrm{Q}_{\mathrm{b}}$ and Q_{c} signals.

2. Draw the circuit diagram of a three bit shift register using JK flip flops only.

Class Test 4

EEE 303: Digital Electronics

Total Marks: 20
 Time: 20 minutes

Student Number:
Date:

1. Using an ordinary 4-bit binary up counter and basic logic gates construct a 4-bit binary counter that counts in the sequence:
$1,3,6,9, C, D, 1,3,6,9, C, D \ldots$
