EEE 303: Digital Electronics

Time: 15 minutes

Student Number:	Date:

1. A circuit with two outputs has to implement the following functions

$$f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \sum m(4, 6, 7, 9, 11, 12, 14, 15) + D(1, 3)$$

$$g(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \sum m(1, 4, 9, 12) + D(3, 6, 14)$$

Total Marks: 20

Design the minimum cost circuit and compare its cost with combined costs of two circuits that implement f and g separately. Assume that the input variables are available both in uncomplemented and complemented forms.

EEE 303: Digital Electronics

Time: 20 minutes

Student Number:	Date:

SET – A

1. A combinational circuit is defined by the following three functions:

i.
$$F_1 = x'y' + xyz'$$

ii.
$$F_2 = x' + y$$

Total Marks: 20

iii.
$$F_3 = xy + x'y'$$

Design the circuit with only a decoder with an enabler pin and some external gates.

2. Construct the truth table for a 4 to 2 input priority encoder with input priorities $\mathbf{w_1}$, $\mathbf{w_2}$, $\mathbf{w_0}$, $\mathbf{w_3}$ where $\mathbf{w_1}$ has the highest priority and $\mathbf{w_3}$ has the lowest. The output binaries are denoted as $\mathbf{y_0}$ and $\mathbf{y_1}$. Now, design the circuit for the encoder using only 4 to 1 multiplexers.

EEE 303: Digital Electronics

Student Number: Date:

Time: 20 minutes

SET - B

- 1. Construct the truth table for a 4 to 2 input priority encoder with input priorities w_1 , w_3 , w_0 , w_2 where w_1 has the highest priority and w_3 has the lowest. The output binaries are denoted as y_0 and y_1 . Now, design the circuit for the encoder using only 4 to 1 multiplexers.
- 2. A combinational circuit is defined by the following three functions:

i.
$$F_1 = x' + y$$

Total Marks: 20

ii.
$$F_2 = x'y' + xy$$

iii.
$$F_3 = xyz' + x'y'$$

Design the circuit with only a decoder with an enabler pin and some external gates.

EEE 303: Digital Electronics

Total Marks: 20 Time: 20 minutes

Student Number: Date:

SET – A

1. Consider the following timing diagram. Assume that the D and Clock inputs are applied to the circuit in Fig. 1, draw waveform for the Q_a , Q_b and Q_c signals.

2. Draw the circuit diagram of a three bit shift register using JK flip flops only.

EEE 303: Digital Electronics

Time: 20 minutes

Student Number: Date:

Total Marks: 20

SET - B

1. Consider the following timing diagram. Assume that the D and Clock inputs are applied to the circuit in Fig. 1, draw waveform for the Q_a , Q_b and Q_c signals.

2. Draw the circuit diagram of a three bit shift register using JK flip flops only.

EEE 303: Digital Electronics

Student Number:	Date:	

Time: 20 minutes

1. Using an ordinary 4-bit binary up counter and basic logic gates construct a 4-bit binary counter that counts in the sequence:

1, 3, 6, 9, C, D, 1, 3, 6, 9, C, D...

Total Marks: 20