
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

FPGA IMPLEMENTATION OF REAL TIME ACOUSTIC

NOISE SUPPRESSION BY SPECTRAL SUBTRACTION

TECHNIQUES

by

Saad Md. Jaglul Haider (0406045)

Upal Mahbub (0406048)

Tauhidur Rahman (0406067)

Supervised by

Dr. A. B. M. Harun-ur Rashid

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF BACHELOR OF SCIENCE

AT

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA,BANGLADESH

SEPTEMBER 2009

BANGLADESH UNIVERSITY OF ENGINEERING AND

TECHNOLOGY

DEPARTMENT OF

ELECTRICAL AND ELECTRONIC ENGINEERING

The thesis entitled “FPGA implementation of Real time

Acoustic Noise Suppression by Spectral Subtraction Techniques”

by Saad Md. Jaglul Haider, Upal Mahbub and Tauhidur Rahman has

been accepted in partial fulfillment of the requirement for the degree of

Bachelor of Science on 30.09.09.

Supervisor:
Dr. A. B. M. Harun-ur Rashid

ii

BANGLADESH UNIVERSITY OF ENGINEERING AND

TECHNOLOGY

Date: September 2009

It is hereby declared that neither this thesis nor any part thereof has been
submitted elsewhere for the award of any degree or diploma.

Author:
Saad Md. Jaglul Haider

Author:
Upal Mahbub

Author:
Tauhidur Rahman

Supervisor:
Dr. A. B. M. Harun-ur Rashid

iii

To Our Parents

iv

Table of Contents

Table of Contents v

Abstract viii

Acknowledgements x

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 The Research Goal . 3

2 Spectral Subtraction Techniques 4
2.1 Basic Spectral Subtraction: Boll’s Algorithm 4

2.1.1 Subtractive Noise Suppression Analysis 4
2.1.2 Additive Noise Model . 5
2.1.3 Spectral Subtraction Estimator . 5
2.1.4 Spectral Error . 6
2.1.5 Magnitude Averaging . 6
2.1.6 Half-Wave Rectification . 7

2.2 Voice Activity Detection Techniques . 8
2.2.1 Zero Crossing Rate . 8
2.2.2 Short Time Energy . 10

2.3 Advanced Approach: A Priori SNR Estimation Technique 11
2.3.1 Principle of Operation . 11

3 Introducing Weighted Moving Average Method 15
3.1 Motivation: Limitations of Boll’s Algorithm 15
3.2 Basics of Weighted Moving Average(WMA) Method 15

3.2.1 WMA Operations . 16

v

3.2.2 Noise Estimation and Spectral Subtraction 17

4 Field Programmable Gate Array (FPGA) 20
4.1 Basic Idea of FPGA . 20

4.1.1 Architecture . 20
4.1.2 FPGA Design and Programming 21
4.1.3 Application of FPGA . 22

4.2 Overall configurations of DE2 Development Board 23
4.3 Configuration of Individual Components Used in the Research 26

4.3.1 Cyclone II 2C35 FPGA . 26
4.3.2 Audio CODEC . 26
4.3.3 Clock inputs . 27
4.3.4 Pushbutton switches . 27
4.3.5 Toggle switches . 27
4.3.6 Serial Configuration device and USB Blaster circuit 27
4.3.7 SRAM . 28
4.3.8 SDRAM . 28
4.3.9 Flash memory . 28

5 Simulation and Hardware Implementation of Moving Average Method 29
5.1 Simulation Results . 29
5.2 FPGA Implementation Technique for Dynamic Moving Average Method . . 32

5.2.1 Overview . 32
5.2.2 Audio Codec . 33
5.2.3 Data Serial to Parallel Conversion Block 35
5.2.4 Fast Fourier Transform Block . 35
5.2.5 Spectral Subtractor Block . 36
5.2.6 Noise Estimator Block . 38
5.2.7 Inverse Fast Fourier Transform Block 38
5.2.8 Data Parallel to Serial Conversion 38

5.3 Experimental Results . 39

6 Simulation and Hardware Implementation of an advanced approach: A Priori
SNR Method 41
6.1 Simulation Results . 41
6.2 FPGA Implementation Technique for A Priori SNR Method 45

6.2.1 Overview . 45
6.2.2 Voice Activity Detector Block . 46
6.2.3 Spectral Subtractor Block with A Priori SNR Estimation 48

vi

6.3 Experimental Results . 51

7 Conclusion 55
7.1 Summary . 55
7.2 Future Design Modifications . 56

A Matlab Simulation Codes 57
A.1 For Weighted Moving Average Method 57
A.2 For A Priori SNR Estimation Method . 59

B Verilog codes 62
B.1 Common Basic Block Codes . 62

B.1.1 Data Serial to Parallel Block . 62
B.1.2 FFT/IFFT Block Using Megacore Functions 64
B.1.3 Square Root Megafunction . 69
B.1.4 Data Parallel to Serial Block . 71

B.2 Algorithm Implementation Blocks . 73
B.2.1 Weighted Moving Average . 73
B.2.2 A Priori SNR Estimation . 78

Bibliography 83

vii

Abstract

Speech Enhancement by suppressing ambient acoustic noise has been a challenging topic

of research for many years. Among the plentiful approaches to retrieve enhance speech,

the spectral subtraction methods are most widely used. The simplicity of these algorithms

and comparatively low computational load made them the primary choice for real time

applications.

This research paper concentrates on modification and implementation of two differ-

ent spectral subtraction algorithms. The novel Weighted Moving Average(WMA) Method

which is proposed in this thesis is a better variant of the traditional spectral subtraction

method. As the simulation result shows, it can improve the Signal to Noise Ratio (SNR)

from 2 to 3 decibel for several types of acoustic noise. It is also shown that it can work

efficiently in a variable noise ambience.

The second algorithm is one of the most recent advancement in the field of speech

enhancement The A Priori SNR Estimation Algorithm. In this research, the algorithm

has been simulated, tested and implemented in Cyclone-II FPGA. A SNR improvement of

about 2-3 db has been obtained by Average Segmented SNR Method for different Standard

noisy signals. Although this improvement seems similar to WMA method, the enhanced

speech is considerably more intelligible to human ear.

The implementations of speech enhancement algorithms are mostly done in micropro-

cessors or DSP processors because of their flexibility. But the high cost per logic element

viii

ix

related to these processors makes them improper for large scale use. Thus, the prime con-

cern of this research is an alternative FPGA (Field Programmable Gate Array) based im-

plementation of the two speech enhancement algorithms which results less cost per logic

element, while maintaining satisfactory quality. In our research several techniques have

been used for minimizing the total resources used. From the experimental results, the

WMA method uses 80% of the total 33216 logic elements of the Cyclone II FPGA chip,

while A Priori SNR method consumes 70

% of the total logic.

Finally, as the FPGA implementation presented in this research works on streaming

speech signals, it can be used in real life environments such as factories, bus terminals,

Cellular Phones, or in outdoor conferences where a large number of people have gathered.

Acknowledgements

We would like to thank Professor A. B. M. Harun-ur Rashid, our supervisor, for his many
suggestions and constant support during this research. We are also thankful to Professor
Md. Kamrul Hasan for his guidance in the theoretical aspects of the research when we
were in chaos and confusion.

Taufique Hasan Al Banna, an Alumni of Buet currently researching in University of
Texas, Dallas, shared with us his knowledge of speech enhancement and provided many
useful references and friendly encouragement.

Of course, we are grateful to our parents for their patience and love. Without them this
work would never have come into existence (literally).

Finally, we wish to thank the following: Tarek, Partha, Md. Gaffar, Nasif and all the
other friends who gave us love and support.

BUET, Bangladesh The Authors
September 2009

x

Chapter 1

Introduction

1.1 Background

The problem of enhancing speech degraded by uncorrelated additive noise, when only the

noisy speech is available, has been widely studied in the past and it is still an active field

of research. Noise, added acoustically to speech, can degrade the performance of digital

voice processors used for speech recognition, compression and authentication. In many ap-

plications, such as mobile communication, efficient noise reduction techniques are needed,

which require a low computational load. Noise suppression and speech enhancement tech-

niques can improve Signal to Noise Ratio(SNR), lower the variance and emphasize the

important features of the speech signal.

In 1979 Steven F. Boll proposed the spectral subtraction method for acoustic noise

suppression [1]. Thereafter, many approaches have been investigated.

For example, C. Beaugeant and P. Scalart[2] proposed method that tried to enhance

noise reduction system based on Wiener filtering in frequency domain by taking into ac-

count short time variations of speech.

In 1980, McAulay, Malpass suggested sppech enhancementusing Soft-Decision Noise

1

2

Suppression Filter.

In 1984, Ephraim and Malah proposed speech enhancement using Minimum Mean

Square Error (or MMSE) estimation [3].

In 1996, Pascal SCALART and Jozue VIERA FILHO [4] confirmed that A Priori SNR

estimation leads to the best subjective result to the problem of single microphone frequency

domain speech enhancement in noisy environment. Later Improved A Priori SNR method

was introduced by Israel Cohen[5], Md. Kamrul Hasan[6] at different times.

In 2004, Yuki DENVA [7]proposed speech recognition with wavelet spectral subtrac-

tion in real noisy environment.

1.2 Motivation

With the rapid development of microprocessors and DSP processors, acoustic noise sup-

pression have been widely implemented with microprocessors or digital signal processors.

These approaches provide flexibility and are suitable for many applications. However due

to their very high cost per logic element microprocessors and digital signal processors are

not suitable for widespread use.

In recent years, FPGA-based hardware implementation technology has been used for

signal processing field successfully due to advantages of their programmable hard-wired

feature, fast time to market and reusable IP (Intellectual Property) cores. Their cost per

logic element is reasonable too. Besides, the FPGA based system can get a very high speed

level, since it can carry out parallel processing by means of hardware mode.

Thus, one of the motivating factor of this research was the high capabilities of modern

FPGA. At the beginning the focus was on the implementation of a relatively easier method,

a modified form of Boll’s algorithm. Thus, weighted moving average method, a novel but

3

simple method, is introduced here and its implementation in FPGA is shown. Afterwards,

the thesis focused on efficient implementation of a more complex A Priori SNR Estimation

Method.

1.3 The Research Goal

FPGA implementation of a novel Spectral Subtraction Technique and another more im-

proved Spectral Subtraction Technique is the primary goal of this research. Here, the

complete FPGA implementation of Dynamic Moving Average Method and A Priori SNR

Estimation Method have been shown. Both the implementation is real time and perfectly

suitable for real life use for example mobile communication from a noisy place like fac-

tory or a busy road. This research also portrays the evolution of three spectral subtraction

algorithms. From Boll’s algorithm, which was quite primitive but simple, the thesis work

delineates the evolution to a much more improved A Priori SNR algorithm. Although A

Priori SNR is a more capable algorithm for expurgating the tainted speech but it is also more

complex. One of the prime concern of this research is, thus, to implement a comparatively

complex algorithm within a limited resource and achieving the best performance. For the

sake of performance evaluation of these spectral subtraction techniques various algorithms

has been used including a subjective SNR Estimation and a objective SNR estimation. A

Graphical User Interface (GUI) has also been created for measuring the performance of the

implementation.

Chapter 2

Spectral Subtraction Techniques

2.1 Basic Spectral Subtraction: Boll’s Algorithm

In 1979 Boll introduced the basic idea of spectral subtraction algorithm. In this section, the

method is briefly described with all necessary equations.

2.1.1 Subtractive Noise Suppression Analysis

By subtracting an estimate of the noise spectrum from the noisy speech spectrum, the

estimator is obtained. Spectral information is required to describe the noise spectrum.

From the signal, measured during non-speech activity, the noise spectrum is obtained.

Some assumptions were used in developing the analysis. This includes that the back-

ground noise is acoustically or digitally added to the speech and the background noise

environment remains locally stationary. It is stationary to the degree that its spectral mag-

nitude expected value just prior to speech activity equals its expected value during speech

activity.

Suitably low-pass filtered and digitized speech is analyzed by windowing data from

4

5

half-overlapped input data buffers. The magnitude spectra of the windowed data are calcu-

lated.The spectral noise bias,which is calculated during non-speech activity, is subtracted

off. Following the subtraction, resulting negative amplitudes are zeroed out and after that

Secondary residual noise suppression is applied. Then, a time waveform is recalculated

from the modified magnitude which is then overlapped and added to the previous data to

generate the output speech[1].

2.1.2 Additive Noise Model

Let, assume that a windowed noise signal n(k) has been added to a windowed speech signal

s(k), with their sum denoted by x(k). Then

x(k)= s(k) + n(k)

The Fast Fourier Transform (FFT) block does the fourier transform on the noisy signal,

yielding,

X(ejω) = S(ejω) +N(ejω)

where

X(ejω) =
L−1∑
k=0

x(k)e−jωk

x(k) =
1

2π

∫ π

−π
X(ejω)ejωkdω

2.1.3 Spectral Subtraction Estimator

The spectral subtraction filter H(ejω) is calculated by replacing the noise spectrum N(ejω)

with spectra which can be readily measured. The magnitude | N(ejω) | of N(ejω) is

6

replaced by its average value µ(ejω) taken during nonspeech activity, and the phase θN(ejω)

of N(ejω) is replaced by the phase θx(ejω) of X(ejω). These substitution result in the

spectral subtraction estimator Ŝ(ejω):

Ŝ(ejω) = [| X(ejω) | −µ(ejω)]ejθx(ejω)

or

Ŝ(ejω) = H(ejω)X(ejω)

with

H(ejω) = 1− µ(ejω)
X(ejω)

ψ(ejω) = E[| N(ejω) |]

2.1.4 Spectral Error

The spectral error ε(ejω resulting from this estimator is given by,

ε(ejω) = Ŝ(ejω)− S(ejω) = N(ejω)− ψ(ejω)ejθx

To reduce the auditory effects of this spectral error, a number of simple modification are

available which includes: 1) magnitude averaging; 2) half wave rectification; 3) residual

noise reduction; and 4) additional signal attenuation during non-speech activity[1].

2.1.5 Magnitude Averaging

Since the spectral error equals the difference between the noise spectrum N and its mean ψ,

local averaging of spectral magnitudes can be used to reduce the error. Replacing | X(ejω |

with | X(ejω | where

7

Figure 2.1: Input output relation between X(ejω) and Ŝ(ejω)

| X(ejω) | = 1
M

M−1∑
i=0

| Xi(e
jω) |

Xi(e
jω)= ith time windowed transform of x(k)

gives

SA(ejω) = [| X(ejω) | − ψ(ejω)]ejθx(ejω)

The rationale behind averaging is that the spectral error becomes approximately

ε(ejω) = SA(ejω)− S(ejω) = | N | − ψ

where, | N(ejω) | = 1
M

M−1∑
k=0

| Ni(e
jω) |

Thus, the sample mean of Ni(e
jω) will converge to ψ(ejω) as a longer average is taken.

2.1.6 Half-Wave Rectification

For each frequency ω where the noisy signal spectrum magnitude | X(ejω) | is less than

the average noise spectrum magnitude ψ(ejω), the output is set to zero. This modification

can be simply implemented by half-wave rectifying H(ejω). The estimator then becomes

8

Ŝ(ejω) = HR(ejω)X(ejω)

where

HR(ejω) = H(ejω)+|H(ejω)|
2

The input-output relationship between X(ejω) and Ŝ(ejω) at each frequency ω is shown

in fig. 2.1. The input-output relationship of X(ejω) and Ŝ(ejω), as shown in Fig. 2.1,

depicts the result of Half-wave rectification at each frequency ω. The advantage of this

rectification is that the noise floor is reduced by ψ(ejω), any low variance coherent noise

tones are essentially eliminated[1].

2.2 Voice Activity Detection Techniques

Due to the limitations of logic elements in the FPGA that was used (Cyclone II), an easy

voice activity detection (VAD) technique was searched. After considering several individ-

ual algorithms the following two algorithms proved to be the best choice

2.2.1 Zero Crossing Rate

If successive samples have different algebraic signs, a zero crossing is said to occur in the

context of discrete-time signals. The rate at which zero crossings occur is a simple measure

of the frequency content of a signal. Zero-crossing rate is a measure of number of times in

a given time interval/frame that the amplitude of the speech signals passes through a value

of zero (Fig. 2.2, 2.3).

Since speech signals are broadband signals, interpretation of average zero-crossing rate

is much less precise. Rough estimates of spectral properties can be obtained using a repre-

sentation based on the short time average zero-crossing rate [9].

9

Figure 2.2: Definition of zero-crossings rate

Figure 2.3: Distribution of zero-crossings for unvoiced and voiced speech

10

A definition for zero-crossings rate is:

Zn =
+∞∑
−∞

|sgn[x(m)]− sgn[x(m− 1)]|w(n−m) where

sgn[x(n)] =

1, for x ≥ 0

−1, for x < 0

and

w(n) =

1

2N
, for 0 ≤ n ≤ N − 1

0, otherwise
It was suggested in the model for speech production that the energy of voiced speech is

concentrated below about 3 kHz. This is because of the spectrum fall of introduced by the

glottal wave. But for unvoiced speech, most of the energy is found at higher frequencies.

There is a strong correlation between zero-crossing rate and energy distribution with fre-

quency since high frequencies imply high zero crossing rates, and low frequencies imply

low one. It should be a reasonable generalization that if the zero-crossing rate is high, the

speech signal is unvoiced and if the rate is low, the speech signal is voiced[9].

2.2.2 Short Time Energy

Generally, the amplitude of the unvoiced speech segments is much lower than that of the

voiced one and the amplitude of the speech signal varies with time. These amplitude vari-

ations are represented by the energy of the speech signal. Short time energy can be defined

as:

En =
∞∑

m=−∞

[x(m)w(n−m)]2

the nature of the short time energy representation is determined by the choice of the

window. We used hamming window in our model which gives much greater attenuation

outside the bandpass than the comparable rectangular window.

11

Figure 2.4: Computation of short time energy

h(n) =

0.54− 0.46cos(2πn
N−1

), for 0 ≤ n ≤ N − 1

0, otherwise
The attenuation of this window is independent of the window duration. Increasing the

length, N, decreases the bandwidth, fig. 2.4. If N is too small,En will fluctuate very rapidly

depending on the exact details of the waveform. If N is too large, En will change very

slowly. Thus it will not adequately reflect the changing properties of the speech signal[9].

2.3 Advanced Approach: A Priori SNR Estimation Tech-
nique

2.3.1 Principle of Operation

Figure 2.5 shows the Flow Diagram of the A Priori SNR Technique. Let, an additive

uncorrelated random noise n(t) gets added to a clean speech signal s(t). Thus, the total

signal, denoted by y(t) is given by,

y(t)= s(t) + n(t)

Now, if at nth frame and kth frequency bin the noisy speech short-time spectral magni-

tude is | Yn,k | and the noise spectral magnitude is | Nn,k |, then an estimate of the clean

12

speech short-time spectral magnitude can be obtained as,

| Ŝn,k |= Gn,k. | Yn,k |

where the optimal gain function is

Gn,k =
Λ(Xn,k,qn,k)

1+Λ(Xn,k,qn,k)
G0
n,k

and G0
n,k is the standard gain

Λ(Xn,k, qn,k) is the generalized likelihood ratio taking into account the uncertainty of

speech presence in the noisy observation defined by

Λ(Xn,k, qn,k) = µn,k
p(Xn,k/H

1
n,k)

p(Xn,k/H
0
n,k)

with µn,k = (1− qn,k)/qn,k, where qn,k is the probability of signal absance in the kth spec-

tral componenet, and p(.) denotes a probability density function. H0
n,k and H1

n,k denote

the two hypotheses of signal absence and presence respectively, in the kth spectral com-

ponent. Here, however, qn,k = 0, Λ/(1 + Λ) equals unity, and Gn,k turns out to be equal

to the standard gain function G0
n,k when the speech signal is always present in the noisy

observation[4].

The expression for standard gain,

G0
n,k =

√
max{0, (1− E{|Nn,k|2}

|Yn,k|2
)} (1)

here E{.} is the expectation operator. Numerous variations of the original subtrac-

tion rule has been proposed. Of them the class of power subtraction algorithms decidedly

produce the most annoying musical noise[6]. In (1), the gain function takes on a value

depending on a posteriori SNR defined by,

SNRpost(n, k) = γn,k =
|Yn,k|2
σ2
d(n,k)

13

Figure 2.5: Flow diagram of A Priori SNR Technique

14

where,σ2
d(n, k) = E{| Nn,k |2}. On the other hand, a priori SNR is defined as,

SNRprior(n, k) = ξn,k =
E{|Sn,k|2}
σ2
d(n,k)

For a stationary or slowly varying noise, the noise estimate [σ̂d(n, k)]2 can be obtained

from the speech pauses as

[σ̂d(n, k)]2 = λD[σ̂d(n− 1, k)]2 + (1− λD | Yn,k |2

where 0.5 ≤ λD ≤ 0.9.

Ephraim and Malah proposed a ”decision-directed” method for estimator ξ̂n,k of ξn,k as

ξ̂n,k = α
|Ŝn−1,k|2
σ̂2
d(n−1,k)

+ (1− α)z[γn,k − 1]

where | Ŝn−1,k |2 denotes the amplitude estimate of the kth speech spectral component,

σ̂2
d(n − 1, k) is the estimate of variance of the kth noise spectral component in the (n-

1)th analysis frame, the opreator z[.] denotes half wave rectification, and α denotes an

averaging parameter. Considering the maximum likelihood estimate of the a priori SNR,

we have ξn,k = E{γn,k−1}. Accordingly the gain function of the original subtraction rule

can be modified by,

GPE
n,k =

√
ξ̂n,k

(1+ξ̂n,k)

and an estimate of the short time clean speech spectral magnitude is obtained as,

| Ŝn,k |= GPE
n,k . | Yn,k |

Chapter 3

Introducing Weighted Moving Average
Method

3.1 Motivation: Limitations of Boll’s Algorithm

Boll’s classic spectral subtraction algorithm assumes noise level to be stationary. However,

in real life situations, the noise level can change its value with changes in surrounding en-

vironment. For example the value of Signal to Noise Ratio (SNR) may decrease abruptly

when a nearby car blows its horn, while someone is talking over Mobile Phone. The classic

spectral subtraction algorithm doesn’t take these situations into account. Thus a modifica-

tion is needed so that the algorithm can follow the change in noise level and make better

estimations. This motivates the introduction of Weighted Moving Average Method.

3.2 Basics of Weighted Moving Average(WMA) Method

The Weighted Moving Average Method assumes that, 1) Noise level can be non-stationary.

2) Noise shows up as an additive component in the energy domain. Hence, the additive

noise component can be subtracted from the noisy speech energy to estimate the clean

15

16

Figure 3.1: Flow diagram for Weighted Moving Average Method

speech energy[10] , 3) The phase distortion can not be perceived by the human ear[11].

The speech, suitably low-pass filtered and digitized, is analyzed by windowing data

from the input data buffers. The magnitude spectra of the windowed data are calculated

and the spectral noise bias calculated by Weighted Moving Average method is subtracted

off. Resulting negative amplitudes are then zeroed out. A time waveform is recalculated

from the modified magnitude. Fig. 3.1 shows the Flow Diagram of WMA method.

3.2.1 WMA Operations

To reduce spectral error (arising from the difference of actual noise and estimated noise)

local averaging of the spectral magnitudes is done. | X(ejω) | is replaced by its weighted

moving average | X(ejω) | where

17

| Xi(ejω) | =

M−1∑
i=0

αiXi(e
jω)

M−1∑
i=0

αi

Xi(e
jω) = i-th time-windowed transform of x(k) and αi = i-th time weighting factor,

where αi ≥ αj when i > j.

Fig. 3 shows the process of calculating the weighted moving average. Weighted aver-

aging is done in order to give emphasis on the most recent data set, for which the estimation

is being done, thus it can be also called Dynamic Moving Average.

3.2.2 Noise Estimation and Spectral Subtraction

The magnitude of the noise for the audio stream is estimated by taking average of a data

set during non-speech activity, and it is represented by ψ(ejω) where

ψ(ejω) = E{| N(ejω) |}

The phase θN(ejω of N(ejω) is replaced by the phase θx(ejω) of X(ejω). These result in

the spectral subtractor estimator

Ŝ(ejω) = [| X(ejω) | −ψ(ejω)]ejθx(ejω)

However, spectral error ε(ejω) results form this estimator, which is given by,

ε(ejω) = Ŝ(ejω)− S(ejω) = N(ejω)− ψ(ejω)ejθx

To reduce the error magnitude averaging and half wave rectification techniques are

implemented [3]. Averaging the magnitude gives,

18

Figure 3.2: Dynamic Moving Average Method

19

SM(ejω) = [| X(ejω) | − ψ(ejω)]ejθx(ejω)

The rationale behind averaging is that the spectral error becomes approximately

ε(ejω) = SM(ejω)− S(ejω) = | N | − ψ

where, | N(ejω) | = 1
n

n−1∑
k=0

| N(ej2πfk) |

Thus, the sample mean of Ni(e
jω) will converge to ψ(ejω) as a longer average is taken

[3].

Fig. 3.2 shows the process of calculating the noise estimation from moving average. It

is assumed, that during non-speech activity, only the noise spectra is obtained. The average

noise obtained at the very beginning of data acquisition, when the speech has not started, is

thus supposed to be the estimated noise. Still, there remains the possibility that the sound

will start as well at the very beginning of the process. In that case, average of the first data

set will be considered as the noise estimation. For the next data sets, the latest average

signal value will be compared with the immediate previous average and if smaller, then the

latest average will be the estimation of noise.

To detect the variation in noise level, periodic upgrade of the noise estimation is done.

For a given number of data sets (r), all the average noise values are stored and then their

mean is calculated. This mean value is set as the new estimation when a period is complete.

Thus, periodic estimation,

| Np(ejω) | = 1
r

r−1∑
i=0

| Ni(ejω) |

So, the estimator can respond to any change in noise level within each r data sets and

upgrade itself.

Chapter 4

Field Programmable Gate Array
(FPGA)

4.1 Basic Idea of FPGA

4.1.1 Architecture

A field-programmable gate array (FPGA) is a semiconductor device that can be configured

by the customer or designer after manufacturing. Hardware Description Language (HDL)

is used to implement or program a logic circuit diagram or a source code in FPGAs[12].

FPGAs contain arrays of configurable logic blocks (CLBs), I/O pads, routine chan-

nels and a hierarchy of reconfigurable interconnections that allow the blocks to be wired

together.

Logic blocks are actually programmable logic components which can perform complex

or simple combinational functions (like AND or XOR) when programmed. These logic

blocks may be simple flip flop or complete blocks of memory. A classic FPGA logic

block comprises 4-input lookup tables (LUT), and a flip-flop. 6 LUTs can be used for high

performance parts. Generally all routing channels have the same number of wires (width).

20

21

Multiple I/O pads may fit into the height of one row or the width of one column in the array.

An application circuit must be mapped into an FPGA with adequate resources. While

the number of CLBs and I/Os required is easily determined from the design, the number of

routine tracks needed may vary considerably even among designs with the same amount of

logic. Since unused routing tracks increase the cost without providing any benefit, FPGA

manufacturer try to provide just enough tracks so that most designs that will fir in term of

LUTs and I/Os can be routed.

There is only one output that can be either the registered or unregistered LUT output.

The logic block has four inputs for the LUT and a clock input. Since clock signals and other

high-fanout signals are normally routed via special purpose dedicated routing networks in

commercial FPGAs, they and other signals are separately managed.

4.1.2 FPGA Design and Programming

To define the behaviour of the FPGA, the user provides a hardware description language

(HDL) or a schematic design. HDL form is easier to work with when handling large struc-

tures as it is possible to just specify them numerically rather than having to draw every

piece by hand. On the other hand, schematic entry can allow for easier visualization of a

design. Using an electronic design automation tool, a technology-mapped netlist is gen-

erated which can be then fitted to the actual FPGA architecture using a process called

”place-and-route”. The user have to validate the map, place and route results via analy-

sis, simulation, and other verification methodologies. Once the process is completed, the

binary file is generated and is used to reconfigure the FPGA

For the purpose of going from schematic/HDL source files to actual configuration, the

source files are fed to a software suite where different steps will produce a file. The file is

22

then transferred to the FPGA via a serial interface (JTAG) or to an external memory device

like an EEPROM.

To simplify the the design of complex systems in FPGAs, there exist libraries of pre-

defined complex functions and circuits that have been tested and optimized to speed up the

design process. These predefined circuits are called ”IP cores” . In a typical design flow,

an FPGA application developer will simulate the design at multiple stages throughout the

design process. Initially the RTL description in VHDL or Verilog is simulated by creating

test benches to simulate the system and observe results. Then, after the synthesis engine

mapped he design to a netlist, it is then translated to a gate level description where simu-

lation is repeated to confirm the synthesis proceeded without errors. Finally the design is

laid out in the FPGA at which point propagation delays can be added and the simulation

run against with these values back-annotated onto the netlist.

4.1.3 Application of FPGA

Application of FPGA s include digital signal processing, software-defined radio, aerospace

and defense system, ASIC prototyping, medical imaging, computer vision, speech recog-

nition, cryptography, bioinformatics, computer hardware emulation and a growing range of

other areas.

With the introduction of dedicated multipliers into FPGA architectures, applications,

which had traditionally been the reserve of DSPs, began to incorporate FPGAs instead.

FPGA s especially find applications in any area or algorithm that can make use of massive

parallelism offered by their architecture.

The adoption of FPGAs in high performance computing is currently limited by the

complexity of FPGA design compared to conventional software and the extremely long

23

Figure 4.1: DE2 Package Contents

turn-around times of current design tools, where 4-8 hours wait is necessary after even

minor changes to the source code.

4.2 Overall configurations of DE2 Development Board

The following hardware is provided on the DE2 board[13]:

• Altera Cyclone II 2C35 FPGA device

• Altera Serial Configuration device - EPCS16

• USB Blaster (on board) for programming and user API control

• both JTAG and Active Serial (AS) programming modes are supported

24

Figure 4.2: Layout of DE2 Board

Figure 4.3: Block Diagram of the DE2 Board

25

• 512-Kbyte SRAM 8-Mbyte SDRAM DE2 User Manual 5

• 4-Mbyte Flash memory (1 Mbyte on some boards)

• SD Card socket

• 4 pushbutton switches

• 18 toggle switches

• 18 red user LEDs

• 9 green user LEDs

• 50-MHz oscillator and 27-MHz oscillator for clock sources

• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

• VGA DAC (10-bit high-speed triple DACs) with VGA-out connector

• TV Decoder (NTSC/PAL) and TV-in connector

• 10/100 Ethernet Controller with a connector

• USB Host/Slave Controller with USB type A and type B connectors

• RS-232 transceiver and 9-pin connector

• PS/2 mouse/keyboard connector

• IrDA transceiver

• Two 40-pin Expansion Headers with diode protection

In addition to these hardware features, the DE2 board has software support for standard

I/O interfaces and a control panel facility for accessing various components.

26

4.3 Configuration of Individual Components Used in the

Research

4.3.1 Cyclone II 2C35 FPGA

• 33,216 LEs

• 105 M4K RAM blocks

• 483,840 total RAM bits

• 35 embedded multipliers

• 4 PLLs

• 475 user I/O pins

• FineLine BGA 672-pin package

4.3.2 Audio CODEC

• Wolfson WM8731 24-bit sigma-delta audio CODEC

• Line-level input, line-level output, and microphone input jacks

• Sampling frequency: 8 to 96 KHz

• Applications for MP3 players and recorders, PDAs, smart phones, voice recorders,

etc.

27

4.3.3 Clock inputs

• 50-MHz oscillator

• 27-MHz oscillator

• SMA external clock input

4.3.4 Pushbutton switches

• 4 pushbutton switches

• Debounced by a Schmitt trigger circuit

• Normally high; generates one active-low pulse

4.3.5 Toggle switches

• 18 toggle switches for user inputs

• A switch causes logic 0 when in the DOWN and logic 1 when in the UP position

4.3.6 Serial Configuration device and USB Blaster circuit

• Alteras EPCS16 Serial Configuration device

• On-board USB Blaster for programming and user API control

• JTAG and AS programming modes are supported

28

4.3.7 SRAM

• 512-Kbyte Static RAM memory chip

• Organized as 256K x 16 bits

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

4.3.8 SDRAM

• 8-Mbyte Single Data Rate Synchronous Dynamic RAM memory chip

• Organized as 1M x 16 bits x 4 banks

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

4.3.9 Flash memory

• 4-Mbyte NOR Flash memory (1 Mbyte on some boards)

• 8-bit data bus

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

Chapter 5

Simulation and Hardware
Implementation of Moving Average
Method

5.1 Simulation Results

The Speech Enhancement algorithm was at first simulated using Matlab (ver. 2007a). A

simple .wav file containing the speech ”Hello, how are you”(Fig. 5.1(a)) was contaminated

with additive white Gaussian noise of different levels ranging from 5 db to -5 db (Fig.

5.1(b)). Then their FFT is calculated (Fig. 5.2). In Fig. 5.1(c) the final noise reduced

sound signal is shown while Fig. 5.3 shows the average noise magnitude and the estimated

noise for different data sets. The data set length was 128, i.e. the FFT/IFFT datalength was

128. The period length was 10 data sets. As we can see from Fig. 5.3 the system tries to

detect any change in noise level after each 10 estimations. If the noise level changes then

it sets the estimation to the new noise level and thus it detects the change.

The algorithm has been tested for different noisy environment. The improvement in

SNR is summarized in Table 5.1. However in some severe cases reduction in intelligibility

is observed.

29

30

Figure 5.1: Time domain view of (a) Original Speech (b) Noisy Speech (c) Speech after Spectral Subtrac-
tion

Table 5.1: Improvement in SNR for different Types of Acoustic Noise

Noise Input SNR (in dB) Output SNR (in dB)

WGN 10.4 20.4

Thunder 7.86 10.25

Boeing 4.7 10.86

Applause 1.8 7.1

Engine 0.82 4.32

31

Figure 5.2: Amplitude Spectra of (a) Original Speech (b) Noisy Speech (c) Speech after Spectral Subtrac-
tion

Figure 5.3: Noise Estimations

32

Figure 5.4: Basic Block Diagram

5.2 FPGA Implementation Technique for Dynamic Mov-

ing Average Method

5.2.1 Overview

A basic block diagram of the Speech Enhancement system is given in Fig. 5.4. The main

modules and block will be described in this section.

The ADC, DAC, Digital Filter and Digital Controller blocks are actually embedded

in the single chip audio codec, while the FFT and IFFT, spectral subtraction and noise

estimations are done in the single chip FPGA. Memory blocks were also used in the process

for storing data.

Of them, the ADC, DAC, Digital Filter and Digital Controller blocks are actually em-

bedded in the single chip audio codec. They were configured to take analog sound input,

digitize them (A/D conversion) to 16 bit data and then after filtering, provide the data as

serial stream for modification to the FPGA chip. The single chip FPGA holds all the mod-

ifying blocks. Of them, the FFT and IFFT blocks convert the data from time to frequency

33

domain and vice versa. The Spectral subtractor block has an embedded moving average

block and with the help of the noise estimator it does necessary modifications on the mag-

nitude spectra of the input sound signal. The modified data is then serially supplied to the

codec and finally D/A conversion provides the analog sound output which can be heard

from the speaker.

In the signal modification portion, first the serial data from the codec is converted to

parallel 16 bit data (Data Serial to Parallel block). After windowing a certain time period,

Fast Fourier Transform (FFT block) is done on the data to obtain the frequency response.

This gives the real and imaginary parts as outputs which are then used to estimate noise as

well as data magnitude and the noise is subtracted from the magnitudes of the concerned

data set. The noise estimator follows a dynamic algorithm and can upgrade its outputs

according to new data set values. After suppressing noise and converting the output to real

and imaginary values, the signal is fed to IFFT (Inverse FFT) block and finally the parallel

data is converted to serial and sent to audio codec. D/A conversion is done inside the codec

and through line out of the board the purified sound can be heard using a headphone or

speaker.

Fig. 5.5 shows a more detailed view of the overall system.

5.2.2 Audio Codec

Like most cases, the first step of implementing an FPGA system, for speech enhancement

is to modify the audio codec. The single chip audio codec has its internal ADC, DAC,

Digital filters, volume controller etc. There are two line in and line out paths(for Left and

Right channels) and they are both connected with separate ADCs and DACs. There are also

ADC (decimation) filter after ADC which ensures the correct sampling frequency output

34

Figure 5.5: System Block Diagram

and DAC filter before DAC that converts the digital audio data at the specified sample rate

for processing by the analogue DAC [14].

There are also ADC filter after ADC and DAC filter before DAC. The ADC filter is a

decimation filter, which converts the raw over-sampled multi-bit data from the ADC to the

correct sampling frequency to be output on the digital interface. On the other hand, the

DAC filter converts the digital audio data from the digital interface at the specified sample

rate to multi-bit over-sampled data for processing by the analogue DAC [14].

The audio codec outputs a serial datastream and some controlling signals. It also takes

serial data stream for DAC.

The output of the ADC filter is converted to serial data streams within the codec and

then provided for modifications. The modified data is again given to the audio codec as a

serial data stream and then the DAC converts the binary data into sounds (output through

line out). The codec also outputs some controlling signals and clocks, which help to modify

its outputs.

35

5.2.3 Data Serial to Parallel Conversion Block

The main operation of this module is to convert the serial data obtained from the codec to

parallel data (commonly 16 bits). This block also maintains the synchronization of data

acquisition for the two different channels (left and right channel - but only one channel is

used) from a single serial data stream. Moreover, it generates some control signals for the

next levels.

5.2.4 Fast Fourier Transform Block

The signal from the serial to parallel conversion block is fed to the FFT block to produce

the frequency domain response. Here Discrete Fourier Transform (DFT) is done on the data

using Fast Fourier Transform (FFT) algorithm. Let x0, x1,xN−1 be complex numbers.

The DFT is done by the formula

X(k) = 1
N

N−1∑
n=0

xn(WNk
N) k=0,1,2.... N-1

Here, W is the twiddle factor where,

WN = e−j
2π
N = cos2π

N
+ j(−sin2π

N
)

The idea behind FFT is to break up the original N point sample into two (N/2) se-

quences. A radix-4 decomposition needs only trivial multiplications. To maintain a high

signal-to-noise ratio throughout the transform computation, a block-floating-point archi-

tecture is used[15].

which is a trade-off point between fixed-point and full-floating point architectures

This results in the highest throughput decomposition, while requiring non-trivial com-

plex multiplications in the post-butterfly twiddle-factor rotations only.

36

Figure 5.6: Spectral Subtractor block in detail

5.2.5 Spectral Subtractor Block

Fig. 5.6 shows the internal construction of the Spectral Subtractor block. First, it takes

the real(a) and imaginary(b) values of FFT output, saves them in a buffer and finds out the

magnitude(r) of the complex quantity by the following equation:

r =
√
a2 + b2 ; where a+ib is the complex value.

The moving average block then calculates the weighted moving average of the mag-

nitudes. This blocks uses the memory to store the values of three consecutive data sets

(including the latest data set), calculates the weighted average and while giving it as a

37

output, it also upgrades its stored values with the latest average. This block follows the

equation

avg(i) = αx(i)+βy(i)+γz(i)
α+β+γ

where x(1), x(2)....x(n), y(1), y(2).....y(n) and z(1), z(2)....z(n) are three consecutive

data sets and x(i) is the latest set. After calculating avg(i) for the current set, the block

will copy all the elements of y(i) to z(i) and x(i) to y(i), then x(i) will hold the values of the

new set of data. The calculation of average will go so on. α, β and γ are weighting factors.

The latest data is given the highest weight. Here, α = 3, β = 2 and γ = 1 was considered.

The noise estimator takes the averages as inputs and gives estimated noise as output.

The estimated noise value is then subtracted from the magnitude and the output is half wave

rectified, i.e. all the values smaller then zero are made zero. What obtained is the new

magnitude magnew. The next job is to convert the new magnitude into real and imaginary

values again keeping the phase angle same as before. If the previous angle was θ then

cos θ = a
r
; sin θ = b

r

Thus, the new real and imaginary values will be

| real − out |= magnew ∗ cos θ = magnew∗a
r

| imag − out |= magnew ∗ sin θ = magnew∗b
r

As the initial magnitude (r) is always positive, the signs are dependent on the values of the

real input(a) and imaginary input(b). The inputs are compared with zero, and if they are

negative, i.e. smaller then zero, then real-out and imag-out are negated respectively.

38

5.2.6 Noise Estimator Block

This module is responsible for continuous noise estimation from the frequency spectrum of

the channel data during non-speech activity. It is directly connected to the RAM in which

all the magnitudes of the latest windowed spectrum is stored. After each N frequency re-

sponse is saved it takes the mean of N magnitudes. If the mean is smaller then the previous

estimation (from the previous N windows) then the estimate is updated. The rationale be-

hind this is the spectrum of the newly windowed channel data is a better approximation of

non-speech activity or channel noise. Also, periodically the noise level is approximated

by averaging the average noise levels of some previous data windows. This has a two fold

effect: (1) It detects the change in noise level (if any) (2) the larger the number of noise

levels taken for averaging, the closer the estimation to the actual level[1].

5.2.7 Inverse Fast Fourier Transform Block

The IFFT block converts the frequency domain values into time domain signal again. It

does the Inverse Discrete Fourier Transform(IDFT), which can be obtained simply by nega-

tion of the imaginary part of the twiddle factor W. The other parts of the algorithm are same

as FFT.

5.2.8 Data Parallel to Serial Conversion

This block takes the parallel signal data of the two channels as input and outputs their

serial combination. This requires fine synchronization which is maintained by using control

signals generated from the previous blocks. The output is then fed to the Audio Codec

through the digital control interface.

39

Table 5.2: Resource Usage

Total Logic Element 26,712 / 33,216 (80%)

Combinational Functions 25,146 / 33,216 (76%)

Dedicated Logic Registers 15,768 / 33,216 (47%)

Total Registers 15,768

Total Pins 18 / 475 (4%)

Total Memory Bits 40,108 / 483,840 (8%)

Embedded Multiplier 48 / 70 (69%)

Finally, the signal passes through the DAC filter and DAC and output sound signal is

obtained from the Lineout speaker.

5.3 Experimental Results

The whole process was implemented in a single chip FPGA (Cyclone II EP2C35F672C6).

Also a single chip Audio codec (WM8731) was used for data in/outs. The coding was

done in verilog using Quartus II (ver. 7.2 sp3). The codec was set in 16 bit mode and

the FFT/IFFT blocks were set for a data length of 128. The output was satisfactory when

input volume was low. This occurs, because of the 16 bit data resolution constraint. Figure

5.7 shows the timing diagram of and control signal flow from module to module. As can

be seen from the figure, the delay between input and output data stream is about 410µsec.

Table 5.2 shows the compilation flow summary of the code. It can be seen from the table

that the logic usage is 80% of the total logic elements available. The free logic elements

40

Figure 5.7: Timing diagram of data flow

thus provides scopes for doing some additional calculations (if needed). The combina-

tional functions(76% used), Embedded Multiplier(69% used) and Memory Bits(only 8%

used)also provide space for expansion of the system.

Chapter 6

Simulation and Hardware
Implementation of an advanced
approach: A Priori SNR Method

6.1 Simulation Results

In the simulation phase various noisy speech signals has been tested using Matlab. For

testing purpose we have used noise from standard noise database named TIMIT. For a

successful evaluation of the algorithm implemented it is incumbent to test it with a motley

of acoustic noise. In table 6.1 it can be seen that we have used acoustic noise of car, train,

street and white noise. and the table shows how our algorithm improves the segmented

SNR of the noisy speech signal.

In fig. 6.1 you can see the original speech signal which was used. Here in this speech

signal a male voice has been used as the original speech signal.

For testing whether our implemented algorithm can keep track with any possible change

in SNR of noisy speech signal a speech signal with variable SNR has been taken. In fig.

6.2 there we have the same speech signal tainted with consecutively 10, 5, 0 db noise. That

is, the first strip of the original speech is polluted by 10 db white noise, the second strip

41

42

Table 6.1: Improvement in SNR for different Types of Acoustic Noise[21]

Noise Input SNR (in dB) Output SNR (in dB)

car 9.2914 12.1181

train 1.0581 4.8687

train 14.2581 16.6920

street 4.3398 7.4295

street 9.6501 10.3276

white 0.8887 6.5067

white 5.3390 10.4005

white 10.2480 14.1132

Figure 6.1: Original Speech Signal

43

Figure 6.2: Noisy speech signal at different SNR level with voice activity flag

Figure 6.3: Enhanced Speech Signal

44

Figure 6.4: Estimated Noise Energy

is polluted by 5 db white noise, and the last part is corrupted by 0 db white noise. In this

figure the blue line represents the voice activity flag. When this flag is 1 it means, that the

VAD detects the frames as a speech. and when 0 it means that the VAD detects the frames

as a Non voice Activity. From the figure it is evident that the VAD can successfully detect

Non Voice Activity.

Fig. 6.3 shows the enhanced speech signal, i.e signal obtained by passing the noisy

speech through the A Priori Estimation process. It clearly represents the improvement in

quality if compared with the noisy signal input (Fig. 6.2).

In fig. 6.4 here is the graph of average estimated noise power in every frame calculated

from the noise spectrum (sigma). From the figure it could be readily understood that the

algorithm can successfully keep track with any change in noise level in the noisy speech

signal.

45

Figure 6.5: Basic Block Diagram

6.2 FPGA Implementation Technique for A Priori SNR

Method

6.2.1 Overview

Figure 6.5 shows a simplified block diagram of the whole system of A Priori Estimation

Method. The fundamental blocks are almost similar to that of weighted moving average

method. However, now there is an additional block before FFT which is VAD (Voice

Activity Detection) block. The Noise Estimator block is also embedded in the spectral

subtraction process. The function of VAD is to decide whether a frame contains speech

signal or not. Depending on this decision the spectral subtractor process implements the A

priori estimation algorithm.

The whole process can be described as follows. The speech signal is given as input to

the line in, the audio codec handles it and provides it as digitized serial data. The serial

data is converted to 16 bit parallel data. The VAD(voice activity detection) block takes this

parallelized data as input and calculates the zero crossing rate and short energy (see the

VAD algorithms in Chapter 2). The 16 bit data is also fed to the FFT block which takes

46

Figure 6.6: System Block Diagram

128 such data (a frame) and gives combined fast fourier transformed output. The magnitude

spectra along with the vad output and some controlling signals are connected to spectral

subtractor process which includes A Priori Implementation block and a noise estimator

block. A Priori SNR estimation and speech enhancement considering voice activity are

done by these blocksets. Finally the enhanced speech signal travels through IFFT, data

parallel to serial block and audio codec to the outside speaker connected to lineout of the

codec. A detailed view of the process is shown in figure 6.6.

6.2.2 Voice Activity Detector Block

The basic operational procedure of Voice Activity Detector(VAD) block is shown in Fig.

6.7. It takes the output of the data serial to parallel block as input, i.e. it works on the

digitized input signal. The decision of presence of speech signal in a frame is affected

by two computational results. One is the calculation of zero crossing rate in each frame.

This is done by comparing the sign of the n-th data with the (n-1)-th data. If the signs are

different then a variable is incremented, else no change is done. The rate of zero crossing

47

Figure 6.7: System Block Diagram

is normally too high for noisy frames. In this research, there were 128 data points in a

single frame and a zero crossing rate above 80 was considered to be the condition of a

noisy frame.

However this condition was not enough, because in many cases, using only this con-

dition may include speech signal containing frames as noisy frame. Specially for high

pitched speech. Thus another condition for ensuring that no speech frame is misinterpreted

as noise is needed to be considered. Calculating the short term energy is a suitable choice

for that. It is very easy to calculate and so it does not need much logic elements. To get

short term energy all the values of a frame are just squared and summed and then divided

by the frame length. If the value of energy is large enough, the frame can be considered

as speech containing frame. A condition is thus set for noisy frames, which is, if the value

of short term energy is below 3700000 then the frame is to be considered noisy. This con-

stant value is chosen by inspection and it simplifies the implementation process. However,

48

it is suggested to use a conditional value for better result (if enough logic elements are

available) as can be obtained from simulation.

Thus, if the zero crossing rate of a particular frame is above 80, while its energy level is

below 3700000, then the frame is considered noisy in this implementation. Otherwise, the

frame is to be considered a speech containing frame. The VAD block makes this decision.

6.2.3 Spectral Subtractor Block with A Priori SNR Estimation

The block diagram of Spectral Subtractor module (fig. 6.8), at a first glance, may seem

almost same as that of moving average method. There are obviously some similarities like

the intake real and imaginary values and calculation of the magnitude spectra and also the

way of giving real and imaginary output values. However, the operation of A priori SNR

speech enhancement module with the help of VAD and noise estimator is quite different.

The VAD block only provides the information, whether a frame contains speech or

noise. Depending on this information the noise estimator block updates its estimation.

If the current frame contains only noise then the noise estimator will use the following

equation to obtain new estimation:

[σ̂d(n, k)]2 = λD[σ̂d(n− 1, k)]2 + (1− λD | Yn,k |2

here [σ̂d(n, k)]2 is the new estimation of noise. The value of λD was chosen to be

116
128

= 0.90625 because it is computationally easier to multiply or divide by a number

which can be represented as a power of 2. 128 is 27, so division is done internally only

by shifting. In case of multiplication we write 116x as (128x-8x-4x) and thus make the

process easier for hardware.

The latest and the previous noise estimations are both input to the A Priori Estimator

block. The operation of the estimator is shown in fig 6.9. σin and σout are input from

49

Figure 6.8: Spectral Subtractor Module in detail

the noise estimator. Another input, Y 2
n,k, is the squared value of the magnitude spectra,

while X2nkin is the Using these three values posteriori and priori SNR values are calcu-

lated. Finally the enhanced signal values are calculated using the equations described in

the theoretical portion. The RAM block shown in the figure represents the memory block

of the hardware. It stores, as shown in the figure, several arrays of data inputs and outputs.

50

Figure 6.9: A Priori SNR Implementation Block

51

6.3 Experimental Results

Verilog HDL has been used as the Hardware Definition Language for this research. The

complete implementation has been experimented in seven modules and a Audio Codec.

The Resource usage in the FPGA board is shown below in Table 6.2. As can be seen, the

efficient reduction of logic elements has lead to a total logic usage of only 70% for this

complex algorithm, while it was 80% for WMA. The following techniques were applied

for logic usage reduction:

• The multiplications and divisions were done by shifting, i.e. they were all represented

by a power of 2.

• In many cases additions and subtractions were done instead of multiplication or di-

vision.

• Conditional statements for flooring or ceiling were ignored whenever acceptable

(simulation was done to check acceptability).

• Recursive equations were completely ignored, temporary variables were declared

instead, which lead to reduction of complexity but increment of memory usage.

• For Real Time Implementation of the algorithm, the operations were done in consec-

utive edges of clocks, so that no frame gets lost. This also made possible reuse of

same logic elements at different time, which lead to huge logic element reduction.

Similar to the WMA method, the whole process was implemented in a single chip

FPGA (Cyclone II EP2C35F672C6). Also a single chip Audio codec (WM8731) was used

for data in/outs. The Verilog coding was done in Quartus II (ver. 7.2 sp3). The codec

was set in 16 bit mode and the FFT/IFFT blocks were set for a data length of 128. The

52

Table 6.2: Resource Usage

Total Logic Element 23,154 / 33,216 (70%)

Combinational Functions 22,185 / 33,216 (67%)

Dedicated Logic Registers 7,168 / 33,216 (22%)

Total Registers 7168

Total Pins 14 / 475 (3%)

Total Memory Bits 46,092 / 483,840 (10%)

Embedded Multiplier 70 / 70 (100%)

Figure 6.10: Timing diagram of overall data flow

53

Figure 6.11: Timing diagram of the spectral subtractor block

output was satisfactory when input volume was low. This occurs, because of the 16 bit data

resolution constraint.

Figure 6.10 shows the timing diagram of and control signal flow from module to mod-

ule. As can be seen from the figure, the delay between input and output data stream is about

410µsec.

On the other hand, figure 6.11 shows the timing diagram of the spectral subtractor

block for a given test data input. In the figure, fin represents the channel clock signal.

in r and in i are real and imaginary data inputs respectively, source valid, source sop and

source eop are control signals from the previous FFT block. source sop represents the start

of a frame while source eop indicates the end. Thus, for a frame length of 128, consecutive

sop and eop signal contains 128 data points within themselves. Zcr is the estimate of zero

crossing rate of the signals in a frame and energy is the estimation of signal energy level.

Combining these two information the voice activity flag can be determined (very high zcr

54

or very low energy means noise, so flag is zero, else one). Depending on this flag, the noise

energy estimation is updated. The sink sop and sink eop signals are just shifted versions of

source sop and source eop, because the spectral subtractor block starts giving output after

just one cycle of fin. This figure implies that the implemented version is fast enough to give

real time output.

Chapter 7

Conclusion

7.1 Summary

In this research, so far, we have successfully designed, simulated and implemented two

speech enhancement techniques based on spectral subtraction. The simulation and experi-

mental results manifest the improvement in overall quality.

The WMA method, though primitive in comparison to A Priori SNR method, but it still

shows an improvement in following the variable SNR level. The increment in SNR ranges

from 2 to around 8 dB, however in some cases intelligibility was lost.

On the other hand, the A Priori method improves the SNR from 2 to 4 dB while main-

taining intelligibility of the voice signal.

This thesis thus contains substantial comparative analysis of these two algorithms. Sim-

ulation results for different noise types at different noise level are included. Standard noise

signals were used for this methods. The calculation of SNR were also done following

well-known methods like Averaging Segmented SNR and I.S. Method.

The final outcome of this research is the successful implementations of efficient noise

suppression techniques in Cyclone II FPGA, while keeping the cost within limit.

55

56

7.2 Future Design Modifications

The implementation of a more complex but efficient algorithm is dependent on the total

logic elements and memory elements of the FPGA chip. Cyclone II chip, used in this

research, is a quite ordinary FPGA with dsp processing capability, specially for speech

signal processing. In this research the prime concern was, thus, to implement speech en-

hancement algorithms in minimum resources. But this lead to precision loss in many cases

(for example, floating point operation could not be done due to shortage in logic element),

thus degraded quality of output. So, the first step of future improvement is to use a more

powerful chip, for example Cyclone III or Stratix III.

Future works may also include upgrading the algorithms by considering the phase in-

formation and residual error. The modified A Priori SNR estimation with a variable value

of the averaging parameter(α) may improve the performance by reducing musical noise

and transient distortion[6]. The system could be developed for suppressing Non-white

and Non-Stationary noise[16]. Several improved techniques like non-linear spectral sub-

traction[11] , variance measuring method[10] and wavelet spectral subtractor[7] may be

consulted for further development.

Appendix A

Matlab Simulation Codes

A.1 For Weighted Moving Average Method

57

58

garbage

59

A.2 For A Priori SNR Estimation Method

60

garbage

61

garbage

Appendix B

Verilog codes

B.1 Common Basic Block Codes

B.1.1 Data Serial to Parallel Block

62

63

garbage

64

B.1.2 FFT/IFFT Block Using Megacore Functions

65

garbage

66

garbage

67

garbage

68

garbage

69

B.1.3 Square Root Megafunction

70

garbage

71

B.1.4 Data Parallel to Serial Block

72

garbage

73

B.2 Algorithm Implementation Blocks

B.2.1 Weighted Moving Average

Spectral Subtractor Block

74

garbage

75

garbage

76

Moving Average Block

garbage

77

Noise Estimator Block

garbage

78

B.2.2 A Priori SNR Estimation

Spectral Subtractor Block

79

garbage

80

garbage

81

garbage

82

Memory Block

garbage

Bibliography

[1] Steven F. Boll. ”Suppression of Acoustic Noise in Speech Using Spectral Subtrac-

tion”. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-27, No.

2, April 1979.

[2] C. Beaugeant and P. Scalart. ”Noise reduction Using Perceptual Spectral Change”.

EUROSPEECH’99, pages 2543–2546, 1999.

[3] Ephraim and Malah. ”Speech Enhancement Using a Minimum Mean Square Error

Short Time Spectral Amplitude Estimator”. IEEE Transactions on Acoustics, Speech

and Signal Processing, ASSP-32:1109–1121, 1984.

[4] Pascal Scalart and Jozue VIEIRA FILHO. ”Speech Enhancement Based on A PRIORI

Signal to Noise Estimation”. IEEE Transactions on Acoustics, Speech and Signal

Processing, ICASSP, Vol. 2:629–632, 1996.

[5] Israel Cohen. ”Speech Enhancement Using a Noncausal A Priori SNR Estimator”.

IEEE Signal Proecssing Letters, Vol. 11, No. 9, September 2004.

[6] Md. Kamrul Hasan, Sayeef Salahuddin, and M. Rezwan Khan. ”A Modified A Pri-

ori SNR for Speech Enhancement Using Spectral Subtraction Rules”. IEEE Signal

Proecssing Letters, Vol. 11, No. 4:450–453, April 2004.

83

84

[7] Yuki Denda, Takanobu Nishiura, Hideki Kawahara, and Toshio Irino. ”Speech Recog-

nition with wavelet spectral subtraction in real noisy environment”. ICSP’04 Proceed-

ings.

[8] Bachu R.G., Kopparthi S., Adapa B., and Barkana B.D. ”Separation of Voiced and

Unvoiced using Zero crossing rate and Energy of the Speech Signal”. ASEE, 2008.

[9] Rabiner, L. R., and R. W. Schafer. ”Digital Processing of Speech Signals, Englewood

Cliffs”. 512-ISBN-13:9780132136037, 1978.

[10] Ashish Panda, Neha Tripathi, and Thambipillai Srikanthan. ”Improved Spectral Sub-

traction Technique for Text-Independent Speaker Varification”. 15th Intl. Conf. on

Digital Signal Processing (DSP), 2007.

[11] Jiri Poruba. ”Speech Enhancement Based on Nonlinear Spectral Subtraction”. Fourth

IEEE International Conference on Devices, Circuits and Systems, Aruba, April 17-19,

2002.

[12] Wikipedia. www.wikipedia.com/FPGA.

[13] User Manual of DE2 Development and Education Board. Altera Corporation.

[14] Audio Codec WM8731/8731L datasheet. Altera Corporation.

[15] FFT Megacore Function, User Guide ALTERA MegaCore Version 7.2. Altera Corpo-

ration.

[16] Scott M. McOlash, Russell J. Niederjohn, and James A. Heinen. ”A Spectral Sub-

traction Method for the Enhancement of Speech Corrupted by Non-White, Non-

Stationary Noise”. IEEE, IECON, 1995.

[17] B. Gold. ”Robust speech processing”. Jan. 27, 1976. 1976-6, DDC AD-A01Z P99/0.

85

[18] Nicholas W.D. Evans, John S. D. Mason, Wei M. Liu, and Benôit Fauve. ”An As-

sessment of the Fundamental Limitaitons of Spectral Subtraciton”. ICASSP, 2006.

[19] Altera Corporation. Quartus Hand Book. www.altera.com.

[20] John G. Proakis and Dimitris G. Manolakis. ”Digital Signal Processing, 3rd Edition”.

[21] ”http://www.utdallas.edu/ loizu/speech/noizeus/”.

[22] Michael D. Ciletti. ”Advanced Digital Design with the Verilog HDL”. 2003 Edition.

[23] Scott M. McOlash, Russell J. Niederjohn and James A. Heinen. ”A Spectral Sub-

traction Method for the Enhancement of Speech Corrupted by Non-White, Non-

Stationary Noise”. copyright IEEE 1995.

[24] I.Y.Soon and S.N.Koh. ”Low Distortion Speech Enhancement”. IEEE Proc-Vis. Im-

age Signal Process, Volume-147, No-3, June 2000.

[25] Wee-Soon Ching and Peng Seng Toh. ”Enhancement of Speech Signal Corrupted by

High Acoustic Noise”. IEEE TENCON, 1993.

